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Abstract: The small GTPase Rho and its downstream effector, Rho-kinase (ROCK), regulate various
cellular functions, including organization of the actin cytoskeleton, cell adhesion and migration. A
pro-inflammatory lipid mediator, lysophosphatidic acid (LPA), is a potent activator of the Rho/ROCK
signalling pathway and has been shown to induce the expression of chemokines and cell adhesion
molecules (CAMs). In the present study, we aimed to elucidate the precise mechanism by which
ROCK regulates LPA-induced expressions and functions of chemokines and CAMs. We observed
that ROCK blockade reduced LPA-induced phosphorylation of IκBα and inhibited NF-κB RelA/p65
phosphorylation, leading to attenuation of RelA/p65 nuclear translocation. Furthermore, small
interfering RNA-mediated ROCK isoform knockdown experiments revealed that LPA induces the
expression of monocyte chemoattractant protein-1 (MCP-1) and E-selectin via ROCK2 in human aortic
endothelial cells (HAECs). Importantly, we found that ROCK2 but not ROCK1 controls LPA-induced
monocytic migration and monocyte adhesion toward endothelial cells. These findings demonstrate
that ROCK2 is a key regulator of endothelial inflammation. We conclude that targeting endothelial
ROCK2 is potentially effective in attenuation of atherosclerosis.
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1. Introduction

Atherosclerosis is a chronic arterial disease that is caused by inflammatory and regenerative
processes. In the progression of the atherosclerosis, endothelial-leukocyte adhesion molecules
including vascular cell adhesion molecule-1 (VCAM-1) and E-selectin play a key role in the early
adhesion of mononuclear leukocytes to arterial endothelium at sites of atheroma initiation. Once
adherent to the endothelial cell, leukocytes migrate through the endothelium by chemokines [1].
Lysophosphatidic acid (LPA), a pro-inflammatory lipid mediator, is produced and released from
activated platelet [2]. Serum levels of LPA are elevated in a variety of pathological settings including
diabetes and acute coronary syndrome [2–5]. LPA accumulates in atherosclerosis lesions [6,7] and
it triggers the release of the chemokines including CCLs, CXCLs, colony-stimulating factors and
interleukins from endothelial cells through its receptors [8–10]. Furthermore, inhibition of LPA
receptors has been shown to attenuate atherosclerosis development in LDL receptor-deficient mice [11].
Despite the importance of lipid mediator-induced vascular inflammation, our understanding of the
molecular mechanisms that governs atherosclerosis remains incomplete. Given the epidemic of
cardiovascular disease, understanding the precise mechanism regulating LPA-induced atherogenic
signalling is of considerable interest.
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Rho-kinase (ROCK) was initially characterized as a mediator of Rho-induced stress fibre
formation [12]. Activation of the Rho/ROCK pathway leads to the phosphorylation of downstream
substrates, including myosin phosphatase target subunit [13], which has been postulated to control
diverse cellular functions such as cell proliferation, contraction, migration and gene expression [14].
A series of recent studies have demonstrated that Rho/ROCK signalling plays a crucial role in
cardiovascular disease [15–17]. ROCK has two isoforms, ROCK1 and ROCK2 that share 65% sequence
similarity [18]. Interestingly, it has become increasingly clear that ROCK1 and ROCK2 show distinctive
roles in regulating endothelial function. For instance, Shimada et al. indicated the contribution of
ROCK2 to the induction of intracellular adhesion molecule-1 (ICAM-1) and VCAM-1 through NF-κB
activation [2]. However, it remains unclear (1) what other genes are regulated by ROCK, (2) how ROCK
regulates NF-κB signalling, (3) whether ROCK2 isoform has specific role in endothelial dysfunction by
modulating chemokines and CAMs. We aimed to address these questions in the present study.

2. Results

2.1. Regulation of Inflammatory Cytokines, Receptors and Adhesion Molecules via ROCK

To comprehensively assess the influence of ROCK on the development of atherosclerosis, we
first performed PCR array screening the entire inflammatory pathway. As a result, a large number of
chemokines and inflammatory cytokines including CCL, CSF and TNF, which have been demonstrated
to be upregulated by LPA [10,19,20], were downregulated by a chemical inhibitor of ROCK (Y-27632) in
LPA-stimulated HAECs, indicating a broad effect of ROCK on the inflammatory machinery (Figure 1A).
Of note, there was a trend of upregulation in some genes including CXCL10, CXCL11, CXCR1, CXCR2
and CXCL12 was significantly increased by ROCK inhibition.

MCP-1 is a potent monocyte agonist and the absence of MCP-1 provides dramatic protection from
macrophage recruitment and atherosclerotic lesion in apo B transgenic mice [21]. Consistently with the
results obtained from PCR array, real-time PCR and Western blot analysis demonstrate that Y-27632
inhibits LPA-induced MCP-1 protein secretion and mRNA expression (Figure 1B,C), confirming the
contribution of ROCK in the MCP-1 induction.

We next investigated the potential role of ROCK in mediating the induction of E-selectin. E-selectin
acts as an adhesion molecule mediating the first step in leukocyte extravasation and plays an important
role in the development of coronary heart diseases [22]. As shown in Figure 1D, E-selectin was induced
by the stimulation of LPA. This induction was suppressed by Y-27632, indicating that LPA induces
E-selectin in a ROCK-dependent manner. Consistently, Y-27632 suppressed mRNA expression and
promoter activity of E-selectin (Figure 1E,F). Taken together, these data provide evidence for the broad
contribution of ROCK in the pathogenesis of endothelial inflammation.



Int. J. Mol. Sci. 2019, 20, 1331 3 of 16
Int. J. Mol. Sci. 2019, 20, x 3 of 17 

 

 
Figure 1. ROCK modulates expression of inflammatory cytokines, receptors and adhesion molecule. 
(A) Inflammatory cytokines and receptors PCR array for HAECs. No.1–3 samples were stimulated 
with LPA (50 μM) for 8 h. No.4–6 samples were pre-treated with Y-27632 (10 μM) before stimulation 
with LPA (50 μM) for 8 h. Heat map depicts the relative expression values for the 37 cytokines (n = 3). 
(B) HAECs were treated with Y-27632 (10 μM) for 30 min and then were stimulated by LPA (50 μM) 
for 12 h. Culture media were harvested and followed by ELISA (n = 3). * p < 0.05. (C) HAECs were 
pre-treated with Y-27632 (10 μM) before stimulation with LPA (50 μM) for 4 h. MCP-1 mRNA was 
analysed by quantitative real-time PCR (n = 3). * p < 0.05. (D) HAECs were pre-treated with Y-27632 
(10 μM) and then stimulated with LPA (50 μM) for 8 h. Cell lysates were subjected to Western blot 
analysis for E-selectin. β-actin was loaded as internal control. The histogram shows the relative 
intensity of each band (n = 3). * p <0.05. (E) HAECs were pre-treated with Y-27632 (10 μM) before 

Figure 1. ROCK modulates expression of inflammatory cytokines, receptors and adhesion molecule.
(A) Inflammatory cytokines and receptors PCR array for HAECs. No.1–3 samples were stimulated
with LPA (50 µM) for 8 h. No.4–6 samples were pre-treated with Y-27632 (10 µM) before stimulation
with LPA (50 µM) for 8 h. Heat map depicts the relative expression values for the 37 cytokines (n = 3).
(B) HAECs were treated with Y-27632 (10 µM) for 30 min and then were stimulated by LPA (50 µM)
for 12 h. Culture media were harvested and followed by ELISA (n = 3). * p < 0.05. (C) HAECs were
pre-treated with Y-27632 (10 µM) before stimulation with LPA (50 µM) for 4 h. MCP-1 mRNA was
analysed by quantitative real-time PCR (n = 3). * p < 0.05. (D) HAECs were pre-treated with Y-27632
(10 µM) and then stimulated with LPA (50 µM) for 8 h. Cell lysates were subjected to Western blot
analysis for E-selectin. β-actin was loaded as internal control. The histogram shows the relative
intensity of each band (n = 3). * p < 0.05. (E) HAECs were pre-treated with Y-27632 (10 µM) before
stimulation with LPA (50 µM) for 8 h. E-selectin mRNA was analysed by quantitative real-time
PCR (n = 3). * p < 0.05. (F) HAECs were transfected with a pGL3-ELAM-LUC construct. Cells were
pre-treated with Y-27632 (10 µM) before stimulation with LPA (50 µM) for 4 h. The bar graph shows
the relative luciferase activity of each sample (n = 3). * p < 0.05. Data are expressed as means ± SEM.
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2.2. Phosphorylation of IκBα is Mediated via ROCK Signaling

NF-κB pathway is responsible for the transcriptional induction of inflammatory cytokines,
chemokines and CAMs including MCP-1 and E-selectin [23,24]. Given ROCK’s ability to regulate
activation of NF-κB signalling pathway [25–29], we investigated the mechanism underlying ROCK
regulation of LPA-induced NF-κB activation. We first confirmed that NF-κB is involved in LPA-induced
expression of E-selectin. As shown in Figure 2A, chemical inhibitor of NF-κB abolished MCP-1 and
E-selectin induction by LPA. This data confirms that MCP-1 and E-selectin are strongly regulated by the
NF-κB signalling. To investigate the effect of ROCK inhibition on phosphorylation and degradation of
IκBα, well-characterized initial steps in NF-κB activation [30], we examined the kinetics of IκBα protein
levels by Western blot analysis. Treatment with LPA caused a significant increase in phosphorylation
of IκBα, which was reversed by ROCK inhibition (Figure 2B). Consistent with this observation,
LPA-induced IκBα degradation was rescued and subsequent phosphorylation of RelA/p65 was
decreased respectively by the treatment of Y-27632 (Figure 2C). These results indicate that ROCK
signalling contributes to LPA-induced NF-κB activation through a mechanism that is dependent on
IκBα degradation. Consistently, LPA increased nuclear-to-cytoplasmic ratio of RelA/p65 levels and
this effect was attenuated by the inhibition of ROCK signalling (Figure 2D). Fluorescence microscopy
(Figure 2E) also confirmed that RelA/p65 protein was predominantly localized in the cytoplasm under
basal conditions and that exposure of endothelial cells to LPA resulted in cytoplasmic-to-nuclear
translocation of RelA/p65 in a ROCK-dependent manner. These observations indicate that ROCK
regulates NF-κB activation via phosphorylation of IκBα and thereby transactivates inflammatory
mediators in endothelial cells.
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Figure 2. Kinetics of IκBα is under the control of ROCK signalling. (A) HAECs were pre-treated with 
Bay 11-7082 (5 μM) before stimulation with LPA (4 h). MCP-1 and E-selectin mRNA expression levels 
were analysed by quantitative real-time PCR (n = 3). * p < 0.05 vs. LPA alone. (B) HAECs were pre-
treated with Y-27632 (10 μM) before stimulation with LPA (50 μM) for 1 h. Cell lysates were prepared 
and assayed for IκBα phosphorylation by Western blot analysis. A representative blot of three 
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Figure 2. Kinetics of IκBα is under the control of ROCK signalling. (A) HAECs were pre-treated
with Bay 11-7082 (5 µM) before stimulation with LPA (4 h). MCP-1 and E-selectin mRNA expression
levels were analysed by quantitative real-time PCR (n = 3). * p < 0.05 vs. LPA alone. (B) HAECs
were pre-treated with Y-27632 (10 µM) before stimulation with LPA (50 µM) for 1 h. Cell lysates were
prepared and assayed for IκBα phosphorylation by Western blot analysis. A representative blot of three
independent experiments is shown. The bottom histogram shows the relative intensity of each band.
* p < 0.05. (C) HAECs were pre-treated with Y-27632 (10 µM) before LPA (50 µM) stimulation for 1 h.
Cell lysates were prepared and assayed for IκBα expression and RelA/p65 phosphorylation by Western
blot analysis. A representative blot of three independent experiments is shown. The histograms show
the relative intensity of each band. * p < 0.05. (D) HAECs were pre-treated with Y-27632 (10 µM)
and then stimulated with LPA (50 µM) for 1 h. Cytoplasmic and nuclear extracts were prepared and
assayed for nuclear translocation of RelA/p65 by Western blot analysis. A representative blot of three
independent experiments is shown. The histograms show the relative intensity of each band. * p < 0.05.
(E) HAECs were treated with LPA (50 µM) for 1 h. In a set of experiments, cells are pre-treated with
Y-27632 (10 µM). Cells were fixed and stained with anti-RelA/p65 antibody (red) and Hoechst (blue)
(magnification ×400). A representative photomicrograph of three independent experiments is shown.
Scale bar, 10 µm. Data are expressed as means ± SEM.

2.3. ROCK2 is Required for LPA-Induced MCP-1 and E-Selectin Expression in HAECs

ROCK has two isoforms, ROCK1 and ROCK2 [18]. In order to examine isoform-specific activities
of ROCK, we first performed immunoprecipitation assay. Intriguingly, LPA selectively activated
ROCK2 in endothelial cells (Figure 3A). We next knocked down ROCK1 and ROCK2 separately using
siRNA duplexes to determine the role of isoform-dependent contribution on endothelial inflammation.
By knocking down ROCK1 or ROCK2, cell shrinkage was observed, confirming the reduction of
ROCK [14]. We observed sufficient knockdown efficiency by analysing relative mRNA levels and
protein levels of ROCK1 as well as ROCK2. The mRNA and protein levels of ROCK1 or ROCK2 were
significantly lower, with a compensatory greater level of ROCK2 or ROCK1, in HAECs with gene
silencing (Figure 3B,C). As shown in Figure 3D,E, individual knockdown of ROCK1 had no effects
on mRNA expressions of MCP-1 and E-selectin. In contrast, gene silencing of ROCK2 resulted in an
attenuation of MCP-1 and E-selectin expressions, indicating that ROCK2 isoform but not ROCK1 is
required for these inductions. These findings suggest that ROCK2 but not ROCK1 governs LPA-driven
inflammatory reactions.
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by quantitative real-time PCR (n = 3). * p < 0.05. (C) HAECs were treated with scrambled control 
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ROCK2 by Western blot analysis. A representative blot of three independent experiments is shown. 
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Figure 3. LPA-induced MCP-1 and E-selectin expression is possibly mediated via ROCK2 in
HAECs. (A) HAECs were stimulated with LPA (50 µM) for 5 min. Cell lysates were subjected
to immunoprecipitation analysis for detecting ROCK1 (left panel) or ROCK2 (right panel) activity.
A representative blot of three independent experiments is shown. Each histogram shows the ratio of
each band. * p < 0.05. (B) HAECs were treated with scrambled control siRNA or Rho-kinase isoform
specific siRNA. Relative mRNA levels of ROCK1 (left panel) and ROCK2 (right panel) were analysed
by quantitative real-time PCR (n = 3). * p < 0.05. (C) HAECs were treated with scrambled control
siRNA or Rho-kinase isoform specific siRNA. Cell lysates were prepared and assayed for ROCK1 and
ROCK2 by Western blot analysis. A representative blot of three independent experiments is shown.
Each histogram shows the ratio of each band. * p < 0.05. (D,E) HAECs stimulated with LPA (50 µM)
for 4h or 8 h were treated with scrambled control siRNA or Rho-kinase isoform specific siRNA and
relative mRNA levels of MCP-1 (D) and E-selectin (E) were analysed by quantitative real-time PCR
(n = 3). * p < 0.05. Data are expressed as means ± SEM.
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2.4. Endothelial ROCK2 Regulates Recruitment of Monocytic Cells

We next sought to understand the biological significance of ROCK2 in migration and adhesion
of monocytes toward endothelial cells. To evaluate recruitment of THP-1, human monocyte lineage
cells, across a chamber exposed to conditioned medium, we conducted chemotaxis assay (Figure 4A).
First, we examined whether MCP-1 is involved in LPA-induced monocytic migration. By knocking
down MCP-1, we observed sufficient knockdown efficiency by analysing relative mRNA levels and
protein secretion of MCP-1 (Figure 4B,C). In the cells treated with control siRNA, the number of
chemotactic cells to the lower chamber was significantly increased in the medium obtained from
LPA-stimulated HAECs, which was greatly inhibited by gene silencing of MCP-1. While it was not
affected by the treatment with ROCK1-specific siRNA, gene silencing of ROCK2 robustly inhibited
LPA-induced monocyte chemotaxis (Figure 4D,E). These findings indicate that endothelial ROCK2
regulates MCP-1-induced recruitment of monocytic cells.
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Figure 4. Endothelial ROCK2 regulates recruitment of monocytic cells. (A) The principle of migration
assay. (B) HAECs were treated with scrambled control siRNA or MCP-1 siRNA. Relative mRNA levels
of MCP-1 were analysed by quantitative real-time PCR (n = 3). * p < 0.05. (C) HAECs were treated
with scrambled control siRNA or MCP-1 siRNA. Culture media were harvested and MCP-1 protein
levels were analysed by ELISA (n = 3). * p < 0.05. (D,E) HAECs stimulated with LPA (50 µM) for 12
h were treated with scrambled control siRNA, Rho-kinase isoform specific siRNA or MCP-1 siRNA.
The HAECs supernatants were then collected and assayed for their chemotactic activity on THP-1 cells
through Transwell chemotaxis chamber. The migrated THP-1 cells were observed with the use of light
microscopy (magnification ×100) (D) and the migrated cells were counted (E) (n = 3). * p < 0.05. Data
are expressed as means ± SEM.
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2.5. ROCK2 Controls Cell to Cell Adhesion in HAECs

Finally, we performed an in vitro adhesion assay using LeukoTrackerTM labelled THP-1 and
monolayers of HAECs to evaluate functional significance of ROCK2-mediated E-selectin induction in
endothelial cells (Figure 5A). First, we confirmed whether E-selectin takes part in LPA-induced cell to
cell adhesion. Knocking down efficiency of E-selectin is shown in Figure 5B,C. In HAEC monolayer
treated with control siRNA, stimulation of LPA increased the number of adherent cells, which was
largely decreased by knocking down of E-selectin (Figure 5D). While individual knockdown of ROCK1
had no effects on the number of adherent cells, ROCK2 gene knockdown by RNA interference resulted
in an attenuation of cell to cell adhesion. These findings indicate that endothelial ROCK2 regulates
E-selectin-induced cell to cell adhesion. Taken together, our results suggest that ROCK2 but not ROCK1,
regulates cell to cell recruitment and adhesion of monocytic cells in endothelial cells (Figure 6).
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Figure 5. Endothelial ROCK2 regulates cell to cell adhesion. (A) The principle of adhesion assay.
(B) HAECs were treated with scrambled control siRNA or E-selectin siRNA. Relative mRNA levels of
E-selectin were analysed by quantitative real-time PCR (n = 3). * p < 0.05. (C) HAECs were treated with
scrambled control siRNA or E-selectin siRNA. Cell lysates were prepared and assayed for E-selectin by
Western blot analysis. A representative blot of three independent experiments is shown. The bottom
histogram shows the ratio of each band. * p < 0.05. (D) HAECs stimulated with LPA (50 µM) for
8 h were treated with scrambled control siRNA or Rho-kinase isoform specific siRNA. Cell lysates
were analysed for cell adhesion to THP-1 using adhesion assay. The bar graph shows the relative
fluorescence unit of each sample (n = 3). * p < 0.05. Data are expressed as means ± SEM.
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In vascular endothelial cells, LPA induces selective activation ROCK2 and expression of chemokines
and E-selectin. As a result, cell to cell adhesion and monocyte migration are increased.

3. Discussion

Chemokine-driven transendothelial migration of monocytes and selectin-mediated adhesion
toward endothelial cells are critical steps in the development of atherosclerosis. As such, it is
important to identify a factor that regulates these processes to develop a novel therapeutic strategy
against atherosclerosis.

ROCK is known to induce endothelial dysfunction by NF-κB activation. However, precise
mechanisms underlying this observation have not been elucidated. Activation signals induce
the phosphorylation of IκB by IκB kinase (IKK), which triggers the degradation of IκBα through
the ubiquitin system, allowing free NF-κB RelA/p65 to translocate to the nucleus and activate
transcription of target genes [31,32]. ROCK does not regulate NF-κB signalling pathway uniformly.
Although our laboratory [17] and Anwar et al. showed that ROCK regulates thrombin-mediated p65
phosphorylation and IκBα phosphorylation in endothelial cells [33], the contribution of ROCK in
LPA-mediated NF-κB activation has not been reported. Our group previously reported that ROCK
regulates nuclear translocation of RelA/p65 via actin dynamics in mesangial cells without altering
p65 phosphorylation [34]. Antoniellis et al. recently reported the possibility that RhoA, an upstream
signalling molecule of ROCK, may regulate the NF-κB (p50) translocation in neutrophils [35]. These
data suggest that ROCK regulates nuclear translocation of multiple NF-κB components. Therefore,
further studies will be interesting to examine whether similar observations are observed in endothelial
cells. In the present study, we found that ROCK mediates LPA-induced phosphorylation of IκBα as
well as subsequent phosphorylation and nuclear translocation of p65 (Figure 2B–E). These observations
suggest that the way of regulating NF-κB varies depending on the kinds of stimuli and types of cells.

The present study identifies ROCK2 as a key regulator of endothelial inflammation and illustrates
its important role in atherogenic process. Different roles of ROCK1 and ROCK2 have been implicated
because they cannot fully compensate for each other’s loss [36]. ROCK2 has been shown to be
expressed in human vascular endothelial cells [37]. Shimada et al. reported the contribution of
ROCK2 to the induction of ICAM-1 and VCAM-1, suggesting that ROCK2 functions as main isoform
in endothelial inflammation [2]. However, it has not been elucidated whether ROCK2 is involved
in regulating monocytic migration and adhesion toward endothelial cells. In the present study, we
demonstrated for the first time that ROCK2 but not ROCK1 regulates these processes (Figure 4A–E,
Figure 5A–D). These findings enhanced the importance of ROCK2 in endothelial dysfunction. It has
also been demonstrated that ROCK2 deficiency in bone marrow-derived cells showed substantially
reduced lipid accumulation and atherosclerotic lesions in the LDL receptor-null mice and this was
associated with decreased foam cell formation and increased cholesterol efflux in ROCK2 deficient
macrophages [38]. Further, elegant study from Shimokawa Laboratory showed that ROCK2 in vascular
smooth muscle cell (VSMC) contributes to the pathogenesis of cardiovascular diseases, including
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pulmonary arterial hypertension [39]. These observations elucidate ROCK2 as an important regulator
of the inflammatory circuitry that governs the development of cardiovascular disease in various cell
types (macrophages, VSMCs and endothelial cells) involved in the development of atherosclerosis.

Until recently, only one ROCK inhibitor has been approved for clinical use in Japan and China.
Fasudil, a ROCK inhibitor, was clinically approved in 1995 in Japan for the prevention and treatment
of cerebral vasospasm after surgery for subarachnoid haemorrhage [40]. Besides fasudil, more than
170 different ROCK inhibitors have been developed [41]. Recently, ripasudil was approved in Japan
for the treatment of glaucoma and ocular hypertension [42]. Of note, SLx-2119, that has 100-fold more
selectivity towards ROCK2 than ROCK1, has been suggested to be a potential drug for the treatment
of ischemic stroke [43], autoimmune disease [44,45] and psoriasis [46]. To confirm our findings and its
therapeutic significance in human, clinical studies of ROCK2 inhibitors in patients with atherosclerosis
will be intriguing.

The present study has several limitations. First, we found that ROCK2 regulates monocytic
migration and adhesion toward endothelial cells, which are essential steps in the development
of atherosclerotic lesions. However, it remains unknown how ROCK2 affects other pathological
machinery in endothelial cells (i.e., angiogenesis, cell death, hyperpermeability, impaired energy
metabolism). Comprehensive microarray-based pathway analysis will be required to understand
the importance of endothelial ROCK2. Second, our PCR array analysis showed increased expression
of CXCL12 and demonstrated a trend toward to enhance mRNA expression of other chemokine
ligands (e.g., CXCL10, 11) and receptors (e.g., CXCR1, 2) in endothelial cells treated with Rho-kinase
inhibitor. CXCL12 has been shown to regulate the recruitment of smooth muscle progenitor cells
and overproduction of CXCL12 may result in vascular remodelling [47]. Furthermore, CXCR1
and CXCR2 are crucial chemokine receptors for neutrophil recruitment during inflammation [48].
Considering the evidence that long-term oral treatment with Rho-kinase inhibitor markedly
attenuated the accumulation of macrophage and the coronary lesion formation in a porcine model of
atherosclerosis [49], we believe Rho-kinase inhibition is beneficial for the prevention of atherogenic
changes: however, in order apply to ROCK2-targeted therapy in a clinical setting, further investigation
in vivo will be required. Tissue-specific and inducible gene expression studies may offer additional
insights into the spatial and temporal in vivo contribution of ROCK2 to endothelial dysfunction and
provide further avenues of investigation. Third, because gene silencing of ROCK2 does not completely
inhibit monocyte migration and cell adhesion in HAECs (Figure 4D,E and Figure 5D), there is a
possibility that other signals also regulate them.

In conclusion, the current study suggested that ROCK2 mediates LPA-induced monocytic
migration and adhesion to endothelial cells by attenuating NF-κB-dependent inductions of chemokines
and CAMs. Our findings raise the possibility that targeting endothelial ROCK2 may be a feasible
approach against atherosclerosis.

4. Materials and Methods

4.1. Reagents

ROCK1 antibody (Cat# sc-17794), ROCK2 antibody (Cat# sc-398519), β-actin antibody (Cat#
sc-47778), Ku-70 antibody (Cat# sc-17789), myosin phosphatase target subunit 1 (MYPT1) antibody
(H-130) (Cat# sc-25618), mouse anti-goat IgG-HRP (Cat# sc-2354), m-IgGκ BP-HRP (Cat# sc-516102),
Protein A/G PLUS-Agarose Immunoprecipitation Reagent were purchased from Santa Cruz
Biotechnology (Santa Cruz, CA, USA). Predesigned human small interfering RNA (siRNA) duplexes
against ROCK1 (Cat# sc-29473), ROCK2 (Cat# sc-29474), MCP-1 (Cat# sc-43914), E-selectin (Cat#
sc-29296) and control siRNA (Cat# sc-37007) also were purchased from Santa Cruz Biotechnology.
IκBα (L35A5) antibody (Cat# 4814), phospho-RelA/p65 antibody (Ser536) (Cat# 3031) and RelA/p65
antibody (Cat# 8242) were from Cell Signalling Technology (Beverly, MA, USA). LPA was purchased
from Cayman Chemical (Ann Arbor, MI, USA). Bay 11-7082 (Cat# B5556), a NF-κB inhibitor, was
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purchased from Sigma-Aldrich (St. Louis, MO, USA). Y-27632 (Cat# 030-24021), a ROCK inhibitor,
was obtained from Wako (Osaka, Japan). E-selectin antibody (Cat# ab18981) was purchased from
Abcam (Cambridge, UK). Phospho-MYPT1 antibody (Thr850) (Cat# 36-003) was from EMD Millipore
corp (Burlington, MA, USA). Goat anti-Rabbit IgG (H+L) secondary antibody (Cat# 32460) was from
Thermo Fisher Scientific (Rockford, IL, USA). Anti-IgG (H+L chain) mouse pAb-HRP (Cat# 330) was
from MBL (Nagoya, Japan).

4.2. Cell Culture

Human aortic endothelial cells (HAECs) (Cat# C-12271) and THP-1 (Cat# TIB202) were purchased
from PromoCell (Heidelberg, Germany) and ATCC (Manassas, VA, USA) respectively but were
not further authenticated after purchase. Testing for mycoplasma contamination has not been
performed. All cells were grown at 37 ◦C in humidified air containing 5% (v/v) CO2. For experiments
with inhibitors, HAECs were incubated with the indicated concentration of agents for 30 min
before stimulation.

4.3. PCR Array

To explore inflammatory genes regulated by ROCK in vascular endothelial cells, we analysed
HAECs gene expression by using Human Inflammatory Cytokines & Receptors RT2 Profiler PCR
Array (Qiagen, Hilden, Germany) after HAECs had been treated with LPA (50 µM) for 8 h with or
without gene silencing of ROCK2. Gene expression heat map was displayed using MeV, a Java tool for
genomic data analysis.

4.4. Enzyme-Linked Immunosorbent Assay (ELISA)

The concentration of MCP-1 in the conditioned medium was determined with a human
CCL2/MCP-1 Quantikine ELISA kit (R&D Systems, Minneapolis, MN, USA) according to the
manufacturer’s instructions. In brief, we added diluted culture medium to 96-well microplates coated
with polyclonal antibody that detects human MCP-1 protein. After the incubation and subsequent
washes, enzyme-linked polyclonal antibody for MCP-1 was added. After another incubation and
washes, we added colour reagents. The signalling intensity was detected by microplate reader at
450 nm/540 nm.

4.5. RNA Isolation and Quantitative Real-Time PCR

Total RNA was isolated from HAECs with TRIzol reagent (Invitrogen) followed by
chloroform-isopropanol extraction and ethanol precipitation and 1 µg of total RNA was
reverse-transcribed using the Prime Script RT reagent Kit (Takara Bio, Otsu, Japan). To evaluate
the mRNA expression of MCP-1 and E-selectin, we performed quantitative real-time PCR analysis
by the Thermal Cycler Dice Real Time System TP800 (Takara Bio) by use of SYBR Green I
fluorescence signals. Primers used for PCR were as follows: human E-selectin, 5′-AGAGTGGA
GCCTGGTCTTACA-3′ (forward) and 5′-CCTTTGCTGACAATAAGCACTGG-3′ (reverse); human
MCP-1, 5′-CAGCCAGATGCAATCAATGCC-3′ (forward) and 5′-TGGAATCCTGAACCCAC
TTCT-3′ (reverse); human β-actin, 5′-CATGTACGTTGCTATCCAGGC-3′ (forward) and 5′-CTCCT
TAATGTCACGCACGAT-3′ (reverse); human ROCK1, 5′-AACATGCTGCTGGATAAATCTGG-3′

(forward) and 5′-TGTATCACATCGTACCATGCCT-3′ (reverse); human ROCK2, 5′-TCAGAGGT
CTACAGATGAAGGC-3′ (forward) and 5′-CCAGGGGCTATTGGCAAAGG-3′ (reverse).
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4.6. Western Blot Analysis

Whole cell lysates were extracted by RIPA buffer. Nuclear extracts were prepared using
NE-PER Nuclear and Cytoplasmic Extraction Reagents (Pierce, Rockford, IL, USA) as directed. Equal
amounts of protein samples were loaded onto SDS-PAGE gels, electrophoresed and transferred onto
nitrocellulose membranes (Invitrogen). After blocking in non-fat milk, we incubated membranes
with primary antibodies and then incubated with the corresponding secondary horseradish
peroxidase-conjugated antibody. The signal intensity was measured by a LAS-4000 mini Luminescent
Image Analyzer (FUJIFILM, Tokyo, Japan).

4.7. Transfection and Reporter Gene Assay

The plasmid pGL3-ELAM-LUC (plasmid#13029, Addgene, Watertown, MA, USA), containing
five copies of consensus E-selectin sequences linked to the luciferase gene, was transfected into HAECs
using FuGENE 6 reagent (Roche Diagnostics, Mannheim, Germany) according to the manufacturer’s
instructions. A total of 2 µg plasmid DNA was used per well. Twenty-four hours after the transfection,
cells were treated with inhibitors before stimulation with LPA. E-selectin activity was determined
using the Dual-Luciferase H Reporter Assay System (Promega, Madison, WI, USA).

4.8. Immunocytochemistry

HAECs grown on glass coverslips were washed with PBS and fixed with 10% (v/v) formalin for
15 min. For detection of E-selectin and RelA/p65, we permeabilized fixed cells with 0.2% (v/v) Triton
X-100 and blocked with PBS containing 10% (v/v) normal goat serum. The cells were then incubated
with an anti-E-selectin antibody (1:200) and anti-RelA/p65 antibody (1:200) at 4 ◦C overnight. After
washing, cells were incubated with Alexa Fluor 532-conjugated secondary (1:100; Molecular Probes,
Eugene, OR, USA) for 1 h. Nuclei were visualized using Hoechst dye. Images were observed on a
BZ-9000 fluorescence microscope (Keyence, Osaka, Japan) using BZ-II analysis application (Keyence,
Osaka, Japan).

4.9. RNA Interference

HAECs at ~50% confluence were transfected with control siRNA (negative control), ROCK1
siRNA, ROCK2 siRNA, MCP-1 siRNA or E-selectin siRNA using Lipofectamine reagent (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s instructions.

4.10. Immunoprecipitation

Whole-cell lysates (500 µg) of HAECs were prepared with RIPA buffer. The immunoprecipitation
assay was performed using Protein A/G PLUS-Agarose (Santa Cruz Biotechnology) with ROCK1
or ROCK2 antibody according to the manufacturer’s protocol. Activity of ROCK1 or ROCK2 was
assessed by western blot analysis using Phospho-myosin phosphatase target subunit 1 (MYPT1)
antibody (Thr850). In this assay, the expression levels of ROCK1 and ROCK2 were identified based on
the corresponding molecular weight without loading positive control samples.

4.11. Chemotaxis Assay

THP-1 monocyte chemotaxis was evaluated in a 24-well Transwell chemotaxis chamber separated
by a 5 µm pore size polycarbonate membrane filter (Costar, Cambridge, MA, USA). HAECs grown to
50% confluence were transfected with control siRNA, ROCK1 siRNA, ROCK2 siRNA or MCP-1 siRNA
as described above. After 48 h, cells were stimulated with LPA (50 µM) for 12 h. Then we added
an aliquot of the culture medium to the lower chamber. An aliquot of THP-1 monocyte suspension
(1.0 × 105 cells/100 µL) was placed in the upper chamber. The dish was incubated at 37 ◦C for 2 h
to promote transmigration of monocytes. The migrated cells that adhered to the lower surface of
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the membrane were stained with Giemsa’s solution and counted on four randomly-selected high
power fields.

4.12. Adhesion Assay

The THP-1 adhesion to monolayer of HAECs was determined using a CytoSelect Adhesion Assay
Kit (Cell Biolabs, San Diego, CA, USA) according to manufacturer’s instructions. At 96-well plates,
HAECs grown to 50% confluence were transfected with control siRNA, ROCK1 siRNA, ROCK2 siRNA
or E-selectin siRNA as described above. After 48 h, cells were stimulated with LPA (50 µM) for 8 h.
After LPA treatment, THP-1 cells (1.0 × 106 cells/mL) were labelled with LeukoTracker, added to the
wells and incubated for 1 h at 37 ◦C. The HAECs were washed to remove the non-adherent THP-1 cells,
lysed and the fluorescence was measured with a spectrofluorometer (Promega) at 480 nm/520 nm.
The experiment was repeated three times with duplicate assay and the results were expressed as
relative fluorescence unit.

4.13. Statistical Analysis

All in vitro data are from three independent experiments. Data are expressed as means ± SEM.
Comparison of groups was performed using analysis of variance and Bonferroni’s post hoc correction.
A value of p < 0.05 was considered statistically significant.
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ROCK Rho-kinase
LPA lysophosphatidic acid
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ICAM-1 intracellular adhesion molecule-1
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IKK IκB kinase
VSMC vascular smooth muscle cell
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