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Aims: Malondialdehyde-modified low-density lipoprotein (MDA-LDL) level has been

reported to be strongly associated with the pathogenesis of cardiovascular diseases. We

focused on diabetic status and investigated its possible contribution to MDA-LDL level.

Methods: The study sample consisted of 2705 patients who were admitted to our hospital

and underwent cardiac catheterization. Blood samples were obtained to measure the levels

of fasting blood sugar (FBS), hemoglobin A1c (HbA1c), insulin, LDL, MDA-LDL and others.

Body mass index (BMI) was also used in constructing structural equation modeling and

Bayesian estimation.

Results: To explore the factors theoretically associated with MDA-LDL level, we performed

structural equation modeling. We generated a path model that revealed that BMI, LDL level

and FBS were significantly associated with MDA-LDL level (P < 0.001 for each factor),

whereas insulin level and HbA1c level were not significantly associated (P = NS for both fac-

tors). Noted above was clearly demonstrated on the image of 2-D contour line by Bayesian

structure equation modeling.

Conclusions: This study clearly showed that hyperglycemia affects MDA-LDL level. An inter-

action between diabetes and dyslipidemia was shown in terms of activation of lipid

oxidation.
� 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-

NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Dyslipidemia and diabetes play important roles in the patho-

genesis of cardiovascular diseases. Many patients with dia-

betes have dyslipidemia, and this dyslipidemia is believed to

be important in mediating cardiovascular risk in diabetes.
Therefore, diabetic dyslipidemia has been the main focus of

discussions regarding the interaction between glucose and

lipid metabolism. However, the real linkage between glucose

and lipid metabolism is much more complex.

Malondialdehyde-modified low-density lipoprotein (MDA-

LDL; oxidized LDL) is LDL that has been modified by MDA,
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leading to the production of a large amount of aldehyde when

LDL degenerates and becomes oxidized [1]. MDA-LDL levels

are known to be elevated in subjects with dyslipidemia [2].

In patients with coronary artery disease (CAD), MDA-LDL level

and M/L ratio have been shown to be increased even when

there are no other differences in the other lipid profiles [3].

In addition, MDA-LDL level has been shown to be potentially

useful as a predictor of restenosis after percutaneous coro-

nary intervention in patients with diabetes [4]. Based on these

findings, the MDA-LDL level has been speculated to be an

important indicator of the progression of arteriosclerosis;

however, the clinical factors affecting MDA-LDL level have

not been fully clarified.

We previously investigated the clinical factors affecting

MDA-LDL levels in high-risk patients requiring catheter inter-

vention [5]. As a result, we found that the MDA-LDL level was

affected by multiple factors such as smoking status (as indi-

cated by Brinkman index), LDL level and male gender. How-

ever, we could not find a significant relationship by

multivariate analysis between glycated hemoglobin (HbA1c)

level and MDA-LDL level in that research. This remained to

be unexplainable for us in some ways.

Previous literatures find that inflammatory responses are

augmented by hyperglycemia and glucose fluctuations via

increased mitochondrial superoxide production and endo-

plasmic reticulum stress [6,7]. Importantly, the inflammatory

responses induced by a transient increase in hyperglycemia

would last during subsequent normoglycemia [8]. The long-

lasting inflammatory response would lead to insulin resis-

tance and much further hyperglycemia [9]. The molecular

pathways that integrate hyperglycemia, oxidative stress,

and vascular disturbance have been clearly described with a

focus on reduced endothelial nitric oxide synthase activity

[10]. It has been widely acceptable that endothelial dysfunc-

tion serves as the initial trigger for excessive contraction

and atherosclerosis in the coronary arteries [11–14].

We hypothesized that hyperglycemia might increase the

oxidization of LDL, although we could not clarify an interac-

tion between HbA1c level and MDA-LDL level [5]. Therefore,

we planned to study this interaction with the use of more pre-

cise components of examination. We searched for the factors

affecting MDA-LDL level using fasting blood sugar (FBS) and

insulin levels together with HbA1c and LDL levels.

Unsurprisingly, FBS, insulin and HbA1c levels are mutually

related and confounding because they are increased in the

same manner in patients with diabetes. It is difficult to use

these confounding factors to make one equation for multi-

variate analysis; therefore, another statistical procedure that

is well-grounded in theory should be used. Structural equa-

tion modeling or covariance structural analysis is one of the

appropriate methods. This method plays an important role

in understanding how the relationship among observed vari-

ables might be generated by other observed variables and/or

hypothesized latent variables. Once a model is established

as relevant to a given data set, it is important to evaluate

the significance of specific parameters within the model, such

as coefficients of regression among latent variables. Structure

equation modeling has often used in the psychiatric field, but

its use is nowwidely spreading to the rest of the medical field.

To reassess the current data from another perspective of
statistical view, Bayesian structure equation modeling was

also applied. Bayesian estimation has been used in a variety

of recent big data analyses [15] and can be used effectively

in structural equation modeling. Bayesian analysis in struc-

ture equation modeling is based on the Markov Chain Monte

Carlo calculation method. Estimating accuracy can be

improved by specifying the prior distribution. In general, it

may be possible to avoid inadequate solutions due to the

small number of samples. In addition, Bayesian structure

equation modeling is easy to understand because the results

can be represented graphically.

2. Methods

2.1. Study patients

The study population consisting of 2705 patients who under-

went cardiac catheterization from January 2012 to June 2017

were examined in this study. The baseline patient characteris-

tics, including clinical parameters and biochemical data, were

collected retrospectively from hospital medical records.

Patientswith insulin therapy and patients on emergent admis-

sion were excluded. This study was approved by the ethics

committee of the Jikei University School of Medicine (Study

protocol: 31-166(9665)); andwe compliedwith the routine eth-

ical regulation of our institution as follows. This is a retrospec-

tive study, and informed consent was unable to be obtained

from each patient. Instead of informed consent from each

patient, we publicly posted a notice about the study design

and contact information at a public location in our institution.

2.2. Data collection

Blood sampling was performed to examine the serum MDA-

LDL, serum creatinine, hemoglobin A1c (HbA1c), fasting blood

sugar (FBS), triglyceride (TG), high-density lipoprotein choles-

terol (HDL), and low-density lipoprotein cholesterol (LDL)

levels. As described in detail previously [5], MDA-LDL level

was measured by an ELISA using an anti-MDA-LDL mono-

clonal antibody (ML25) and b-galactosidase anti-apoB mono-

clonal antibody (AB16) [1]. It is well known that the

combination of ML25 and AB16 can accurately detect MDA-

LDL [1]. The concentration of MDA-LDL was defined at

1 mg/L of MDA-LDL produced artificially, which shows the

same signal as 1 U/L of MDA-LDL in the serum. Serum levels

of LDL were determined enzymatically (Sekisui Medical Co.,

Ltd., Tokyo, Japan).

2.3. Blood sampling and measurement of biochemical
examination

Blood sampling was conducted for every patient with IHD

during cardiac catheterization. Serum biochemical analyses

were performed in a central laboratory in our hospital.

2.4. Statistical analysis

Continuous variables were expressed as the

means ± standard deviation (SD) or the median. Statistical

analyses were performed using IBM SPSS Statistics version
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23.0 (SPSS Inc., Chicago, IL, USA). Single and multiple regres-

sion analyses were adopted on an as-needed basis. Path anal-

ysis based on structure equation modeling was used to

investigate the relationship among clinical factors in this

study population and particularly to identify the significant

factors in organic stenosis or acute coronary syndrome

(ACS). Path analysis was performed using IBM SPSS AMOS

version 23 (Amos Development Corporation, Meadville, PA,

USA). The obtained structural equation models were tested

and confirmed at the significance level for P values of <0.05.

The implementation procedures of structure equation model-

ing have been described previously [16].

In addition, we applied Bayesian structure equation mod-

eling using the program included in IBM SPSS AMOS (version

23.0). In general, Bayesianism permits uncertainty in spite of

a little information and Bayesian approaches allow us to

incorporate background knowledge into our analyses. We

believe that additional testing by Bayesian structure equation

modeling would be rationalized and helpful to reassess our

data from a different angle of statistics. In IBM SPSS AMOS,

the summary table in the Bayesian structure equation model-

ing window becomes available. Frequency polygons were

described with the marginal posterior distributions of the

estimands. The selected 2-D contour line was applied in this

study as it is easily visualized.

3. Results

3.1. Study patient characteristics

The clinical characteristics of the 2705 cases are shown in

Table 1. The average age was 65.7 ± 11.3 years, and 82.6% were

male. The mean MDA-LDL level was 111.9 ± 38.2 U/L, and the

mean HbA1c level was 6.1 ± 0.8%. (Table 1).

3.2. Single and multiple regression analysis results

Single regression analysis revealed a significant correlation

among the respective factors such as log FBS, log HbA1c, log

insulin, log BMI, log TG, log HDL and log LDL with log MDA-

LDL as shown in Table 2. Multiple regression analysis revealed

a significant correlation between the respective factors log

FBS, log TG, log HDL and log LDL with log MDA-LDL. However,

there was no significant correlation among the respective fac-

tors log HbA1c, log BMI and log insulin with log MDA-LDL

(Table 2).

3.3. Concept of the proposed path model

As a matter of logic, structure equation modeling was used to

search for an independent risk affecting log MDA-LDL level

(Fig. 1). The theoretical path model was proposed by position-

ing log BMI, log HbA1c, log FBS, log insulin, log TG, log HDL

and log LDL in parallel. Paths between variables were drawn

from independent to dependent variables with directional

arrows, which were able to examine influencing factors. Most

of the explanatory factors would be confounding with each

other; and the association between any two factors was

linked by the two-way arrows.
3.4. Result of the path model and Bayesian analysis

As shown in Fig. 1 and Table 3, the path model revealed that

log FBS, log TG, log HDL and log LDL were associated with

log MDA-LDL (P < 0.001 for each factor). Intriguingly, there

were no significant associations between log BMI and log

MDA-LDL, between log insulin and log MDA-LDL or between

log HbA1c and log MDA-LDL level (P = NS for each

association).

Noted abovewas clearly demonstrated on the image of 2-D

contour line by Bayesian SEM (Fig. 2).

4. Discussion

Diabetes and dyslipidemia are very important risk factors

for atherosclerosis and ischemic heart disease, respectively,

along with other risk factors such as hypertension, obesity

and cigarette smoking. An interaction between diabetes

and dyslipidemia would be highly hazardous because their

actions would be additive and probably synergistic. One of

the intervention factors would be oxidization of LDL. It is

conceivable that MDA-LDL levels are elevated in patients

with dyslipidemia and possibly diabetes, although the pre-

cise mechanisms for the formation process of MDA-LDL

are unclear under these conditions. Regardless, reducing

the levels of MDA-LDL for the prevention of cardiovascular

disease would be effective; thus, it is important to clarify

the factors affecting MDA-LDL level. As shown in our previ-

ous study, LDL per se and smoking status were important

factors that increased MDA-LDL levels; however, HbA1c did

not achieve statistical significance [5]. In this study, we

again tried to examine a possible contribution of diabetes

to an increase in MDA-LDL levels with indicators such as

FBS, insulin and HbA1c using appropriate statistical

methods.

Since hyperglycemia, hyperinsulinemia, high HbA1c level

and dyslipidemia are associated and mutually confounding,

structure equation modeling was a good candidate for an

effective solution in this study. As a result of this study, we

clearly showed that high FBS was associated with high BMI,

high LDL level, and high MDA-LDL level. A high TG level was

associated with high MDA-LDL level by structure equation

modeling, whereas there was no association between insulin

level and MDA-LDL level and between HbA1c level and MDA-

LDL level. The association between high glucose level and

MDA-LDL level was of high importance in this study. On the

other hand, the current result regarding the non-

significance of HbA1c was almost same as in our previous

study [5]. The current study reinforces previous reports show-

ing the importance of hyperglycemia and glucose fluctuations

on cardiovascular diseases [6–8].

In this analysis, we could not detect a harmful effect of

hyperinsulinemia on MDA-LDL level. Nevertheless, hyperin-

sulinemia is associated with hypertension, obesity, dyslipi-

demia and glucose intolerance; these conditions are

collectively known as metabolic syndrome [17,18]. Further-

more, hyperinsulinemia has been shown to play a role in

obesity-related hypertension due to increasing renal sodium

retention [17]. Additionally, hyperinsulinemia increases



Table 1 – Patient Characteristics.

Mean ± SD, Median [interquartile range] or N (%)

Number of patients 2705
Age, years 65.7 ± 11.3
Male, gender 2233 (82.6)
BMI, kg/m2 24.2 ± 3.9, 24.0 [21.9, 26.3]
FBS, mg/dL 111.3 ± 25.2, 24.0 [21.9, 26.3]
HbA1c, % 6.1 ± 0.8, 5.9 [5.6, 6.5]
LDL, mg/dL 98.4 ± 27.9, 95 [79, 115]
HDL, mg/dL 51.2 ± 15.0, 49 [41, 59]
TG, mg/dL 122.8 ± 68.7, 106 [77, 149]
MDA-LDL, U/L 111.9 ± 38.2, 106 [86, 131]
Insulin, lIU/mL 7.6 ± 7.3, 6.1 [4.4, 8.9]
Disease
Diabetes mellitus 922 (34.1)
Hypertension 2042 (75.5)
Dyslipidemia 1923 (71.1)
Medicine
Statin 1692 (62.6)
OHA 649 (24.0)
Principal reason for hospitalization
Angina pectoris 1712 (63.3)
AMI 27 (1.0)
OMI 399 (14.8)
Cardiomyopathy 138 (5.1)
Aortic disease 16 (0.59)
Congenital heart disease 18 (0.67)
Pulmonary hypertension 26 (0.96)
Arrhythmia 56 (2.1)
Valvular disease 225 (8.3)
Congestive heart failure 75 (2.8)

BMI = body mass index; FBS = fasting blood sugar; HbA1c = hemoglobin A1c; LDL = low-density lipoprotein cholesterol; HDL = high-density

lipoprotein cholesterol; MDA-LDL = malondialdehyde-modified low-density lipoprotein; OHA = oral hypoglycemic agent; AMI = acute

myocardial infarction; OMI = old myocardial infarction.

Table 2 – The results of the single and multiple regression analyses.

Independent variable Single regression analysis Multiple regression analysis (R2 = 0.495)

Standardized
Regression coefficient

95% CI P value Standardized
Regression coefficient

P value

Log FBS 0.072 0.057–0.183 <0.01 0.076 <0.01
Log HbA1c 0.054 0.043–0.242 <0.01 �0.028 0.119
Log Insulin 0.137 0.059–0.103 <0.01 �0.009 0.598
Log BMI 0.128 0.192–0.351 <0.01 0.027 0.096
Log TG 0.405 0.254–0.301 <0.01 0.264 <0.01
Log HDL �0.12 �0.186 to �0.098 <0.01 �0.089 <0.01
Log LDL 0.621 0.681–0.750 <0.01 0.592 <0.01

Dependent variable: log MDA-LDL. FBS = fasting blood sugar; HbA1c = hemoglobin A1c; BMI = body mass index; TG = triglyceride; HDL = high-

density lipoprotein cholesterol; LDL = low-density lipoprotein cholesterol; MDA-LDL = malondialdehyde-modified low-density lipoprotein.
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cardiac hypertrophy [19]. Therefore, the lack of an association

between hyperinsulinemia and MDA-LDL level shown in this

study does not diminish the importance of hyperinsulinemia

in cardiovascular disease.

Hyperglycemia is an important factor in cardiovascular

diseases, working through different mechanisms such as

the activation of protein kinase C, polyol and hexosamine

pathways, and advanced glycation end products production

[20]. All of these pathways promote reactive oxygen species

(ROS) accumulation. ROS can directly damage lipids. There
is much evidence from experimental studies that polyunsat-

urated fatty acids (PUFAs) in the plasma membrane, because

of their multiple double bonds, are extremely susceptible to

attack by free radicals [21]. Hydroxyl radicals initiate a free

radical chain reaction and remove a hydrogen atom from

one of the carbon atoms in PUFAs and lipoproteins, causing

lipid peroxidation that is characterized by membrane protein

damage through subsequent ROS attacks [22]. This relation-

ship would be a possible mechanism for the formation of oxi-

dized LDL from hyperglycemia.



Fig. 1 – Path diagram devised by structure equation modeling. This path diagram examines the effect of each factor on log

MDA. Each factormay be confounded, so the path diagram takes this into account. As a result, for example, it is found that log

FBS, log HbA1c, and log insulin are related (conjugated), but only log FBS affects log MDA. Log MDA: logarithmic value of

malondialdehyde-modified low-density lipoprotein cholesterol, log FBS: logarithmic value of fasting blood sugar, log HbA1c:

logarithmic value of hemoglobin A1c, log BMI: logarithmic value of body mass index, log TG: logarithmic value of triglyceride,

log HDL: logarithmic value of high-density lipoprotein cholesterol, log LDL: logarithmic value of low-density lipoprotein

cholesterol.

Table 3 – Estimates of regression weight and standard regression weight.

Estimate Standard error Test statistic P-value Standard regression coefficient

log MDA-LDL<–log FBS 0.126 0.030 4.237 <0.001 0.075
log MDA-LDL<–log HbA1c �0.074 0.047 �1.559 0.112 �0.028
log MDA-LDL<–log Insulin �0.005 0.010 �0.553 0.580 �0.009
log MDA-LDL<–log BMI 0.054 0.034 1.592 0.111 0.026
log MDA-LDL<–log TG 0.181 0.011 16.817 <0.001 0.264
log MDA-LDL<–log HDL �0.109 0.018 �6.119 <0.001 �0.093
log MDA-LDL<–log LDL 0.678 0.016 41.396 <0.001 0.588

MDA-LDL = malondialdehyde-modified low-density lipoprotein; FBS = fasting blood sugar; HbA1c = hemoglobin A1c; BMI = body mass index;

TG = triglyceride; HDL = high-density lipoprotein cholesterol; LDL = low-density lipoprotein cholesterol.
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5. Study limitation

A few comments on structure equation modeling. Structural

equation modeling is a method of performing factor analysis

and multiple regression analysis simultaneously. In general,

structural equation modeling is useful for exploratory and

descriptive factor analysis. Fortunately, this method can

overcome problems if the explanatory factors are confusing.

Using the advantages of structural equation modeling, we

have recently proposed several path models to explain the
mysterious phenomena in the field of cardiovascular disease

[16–22]. As described in the methodology and above, struc-

ture equation modeling is an effective method, and the rela-

tion between cause and effect can be mentioned. However,

when discussing causes and effect, note the following. The

confounding variable or the third variable that affects both

the cause variable and the result variable needs to be exam-

ined for its causal relationship with the target. Furthermore,

to be causal, more strictly speaking, priorities must be dis-

cussed before the event occurs, in terms of the temporal



Fig. 2 – Bayesian structure equation modeling. In this study, Bayesian analysis was added after structural equation modeling.

Frequency polygons were described by marginal posterior distributions of the estimates. The two-dimensional plot of the

bivariate posterior density shows the relationship between the bivariate marginal posterior plots. From light to dark, the

three shades of gray represent 50%, 90%, and 95% reliable regions, respectively. For example, in the upper left figure, the

horizontal axis represents the effect of log FBS on log MDA, and the vertical axis represents the effect of logHbA1c on log MDA.

Although the distribution slightly overlaps the zero on the vertical axis, it is quite far from the zero on the horizontal axis.

Visually, it is clear that the effect of log FBS on log MDA is much stronger than the effect of log HbA1c on log MDA. Log MDA:

logarithmic value of malondialdehyde-modified low-density lipoprotein cholesterol, log FBS: logarithmic value of fasting

blood sugar, log HbA1c: logarithmic value of hemoglobin A1c, log BMI: logarithmic value of body mass index, log TG:

logarithmic value of triglyceride, log HDL: logarithmic value of high-density lipoprotein cholesterol, log LDL: logarithmic

value of low-density lipoprotein cholesterol.
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priority at which the causal event occurs. Care must be

taken to conclude that there was an exact causal relation-

ship without such consideration. There will be a need to

continue examining this conclusion using a variety of

methodologies. Another study limitation is the timing of

blood glucose measurements. This time, the analysis is per-

formed using only the FBS level. On the other hand, the

effects of postprandial blood glucose are not mentioned in

this study. This is another issue to consider in the future.
6. Conclusion

In conclusion, this study clearly showed that hyperglycemia

affects MDA-LDL level. An interaction between diabetes and
dyslipidemia was shown in terms of activation of lipid

oxidation.
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