1 ORIGINAL ARTICLE

2	Prognostic Significance of Skeletal Muscle Loss During Early Postoperative Period in
3	Elderly Patients with Esophageal Cancer
4	Keita Takahashi, MD ¹ ; Masayuki Watanabe, MD, PhD, F.A.C.S. ¹ ; Ryotaro Kozuki, MD ¹ ;
5	Tasuku Toihata, MD ¹ ; Akihiko Okamura, MD, PhD ¹ ; Yu Imamura, MD, PhD ¹ ; Shinji Mine,
6	MD, PhD ¹ ; Naoki Ishizuka, PhD ²
7	
8	¹ Department of Gastroenterological Surgery, The Cancer Institute Hospital of Japanese
9	Foundation for Cancer Research, Tokyo, Japan
10	² Department of Clinical Trial Planning and Management, The Cancer Institute Hospital of
11	Japanese Foundation for Cancer Research, Tokyo, Japan
12	
13	Correspondence to: Masayuki Watanabe, MD, PhD, F.A.C.S.
14	Department of Gastroenterological Surgery, The Cancer Institute Hospital of Japanese
15	Foundation for Cancer Research. 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan.
16	TEL: 81-3-3520-0111 FAX: 81-3-3520-0141
17	E-mail: masayuki.watanabe@jfcr.or.jp
18	Running title: Skeletal muscle loss after esophagectomy
19	Disclosure information: The authors have nothing to disclose.

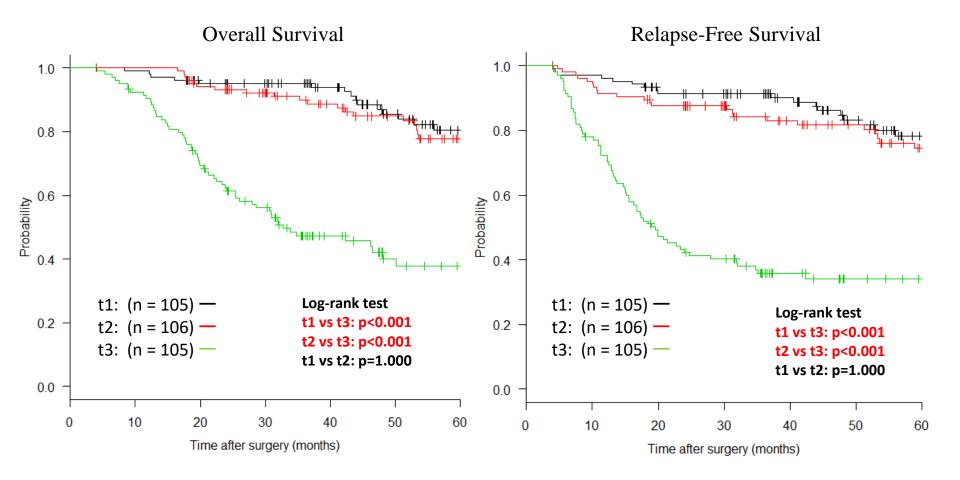
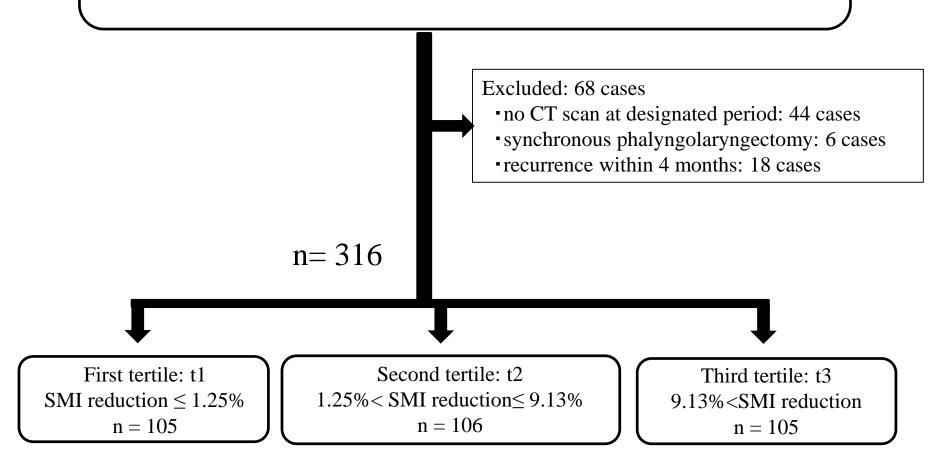


Table 1. Clinicopathologic, operative and postoperative backgrounds of patients

1

Variables	Total N=316	LR N=211	MR N=105	p-value
Age	71.0 ± 4.4	70.8 ± 4.2	71.3 ± 4.8	0.46
Gender				0.87
Male	265 (83.9)	176 (83.4)	89 (84.8)	
Female	51 (16.1)	35 (16.6)	16 (15.2)	
BMI* (kg/m ²)	21.6 ± 3.0	21.8 ± 3.0	21.3 ± 3.0	0.10
$SMI^{**} (cm^2/m^2)$	52.3 ± 7.4	52.4 ± 7.5	52.1 ± 7.4	0.75
Preoperative sarcopenia***	109 (34.5)	68 (32.2)	41 (39.0)	0.26
ASA-PS [#]				0.17
1	79 (25)	57 (27)	22 (21)	
2	228 (72.2)	146 (69.2)	82 (78.1)	
3	9 (2.8)	8 (3.8)	1 (1)	
Preoperative treatment				0.77
None	150 (47.5)	98 (46.4)	52 (49.5)	
Chemotherapy	144 (45.6)	99 (46.9)	45 (42.9)	
Chemoradiation/Radiation	22 (7.0)	14 (6.6)	8 (7.6)	
Histologic subtype	22 (1.0)	14 (0.0)	3 (7.0)	0.071
Squamous cell carcinoma	285 (90.2)	195 (92.4)	90 (85.7)	0.071
Adenocarcinoma		16 (7.6)		
	31 (9.8)	10 (7.0)	15 (14.3)	0.14
fumor location	(0 (12 7)	25 (11.0)	15 (14.2)	0.14
Upper third	40 (12.7)	25 (11.8)	15 (14.3)	
Middle third	133 (42.1)	97 (46)	36 (34.3)	
Lower third	143 (45.3)	89 (42.2)	54 (51.4)	
Type of esophagectomy				0.26
McKeown	274 (86.7)	187 (86.6)	87 (82.9)	
Ivor-Lewis	33 (10.4)	19 (9)	14 (13.3)	
Transhiatal	7 (2.2)	3 (1.4)	4 (3.8)	
Cervical	2 (0.6)	2 (0.9)	0 (0)	
Operation time (min)	535.0 ± 112.5	539.6 ± 111.9	525.6 ± 113.7	0.30
Blood loss (ml)	373.7±315.6	354.9 ± 308.3	411.4 ± 328.1	0.028
Complications				
Anastomotic leakage	22 (7.0)	15 (7.1)	7 (6.7)	1.0
RLNP##	63 (19.9)	43 (20.4)	20 (19)	0.88
Pneumonia	97 (30.7)	64 (30.3)	33 (31.4)	0.90
Depth of penetration				0.97
pT0/1	166 (52.5)	112 (53.1)	54 (51.4)	
pT2	49 (15.5)	32 (15.2)	17 (16.2)	
pT3	96 (30.4)	64 (30.3)	32 (30.5)	
pT4	5 (1.6)	3 (1.4)	2 (1.9)	
ymph node metastasis	. /	. /		0.023
pN0	174 (55.1)	124 (58.8)	50 (47.6)	
pN1	91 (28.8)	57 (27.0)	34 (32.4)	
pN2	38 (12.0)	26 (12.3)	12 (11.4)	
pN3	13 (4.1)	4 (1.9)	9 (8.6)	
Pathologic stage	13 (4.1)	4 (1.2)	2 (0.0)	0.37
	5(16)	5 (2 4)	0	0.57
pStage 0	5 (1.6)	5 (2.4)		
pStage I	132 (41.8)	91 (43.1)	41 (39.0)	
pStage II	92 (29.1)	59 (28.0)	33 (31.4)	
pStage III pStage IV	70 (22.2) 17 (5.4)	47 (22.3) 9 (4.3)	23 (21.9) 8 (7.6)	

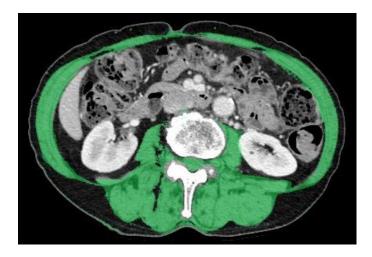

 $[\]mathbf{2}$

Data expressed as number (%) or Mean±Standard deviation, *BMI Body mass index, **SMI skeletal mass index, **Preoperative sarcopenia SMI<52.4 cm/m² in male and SMI<38.5 cm/m² in female #ASA-PS American Society of Anestheologists-physical status, ##RLNP Recurrent laryngeal nerve palsy.

3 4

 $\mathbf{5}$

384 consecutive patients (≥ 65 years old) with esophageal cancer (squamous cell carcinoma or adenocarcinoma) who underwent R0 esophagectomy between January 2008 and December 2016


	Univariate Analy	sis	Multivariate Analysis	
Variables	Hazard ratio (95% CI)	p-value	Hazard ratio (95% CI)	p-value
Age (year), per 1 year	1.108 (1.063-1.155)	< 0.001	1.105 (1.062-1.150)	< 0.001
Gender(male)	2.167 (1.093-4.297)	0.027	2.164 (1.083-4.324)	0.029
Pathological findings				
pT, 3 or 4	2.462 (1.655-3.641)	< 0.001	2.322 (1.314-4.102)	0.004
pN, positive	2.149 (1.436-3.215)	< 0.001	1.027 (0.588-1.793)	0.923
pStage, III or IV	2.376 (1.600-3.526)	< 0.001	1.475 (0.728-2.989)	0.281
SMI reduction (quartiles)*				
q1 (≤-0.22%), reference	1.000	-	1.000	-
q2 (-0.21~5.57%)	0.424 (0.248-0.725)	0.002	0.869 (0.414-1.825)	0.711
q3 (5.58 ~ 11.03%)	0.598 (0.363-0.985)	0.044	1.561 (0.757-3.218)	0.228
q4 (≥11.04%)	7.112 (4.726-10.700)	< 0.001	8.326 (4.365-15.880)	< 0.001

 $\mathbf{2}$

*SMI skeletal mass index

 $\mathbf{5}$

Supplemental Figure 2

Table 2. Univariate and multivariate analysis of risk factors for overall survival

Variables	Univariate Analysis		Multivariate Analysis	
variables	Hazard ratio (95% CI)	p-value	Hazard ratio (95% CI)	p-value
Age (year), per 1 year	1.108 (1.063-1.155)	< 0.001	1.116 (1.072-1.162)	< 0.001
Gender (male)	2.167 (1.093-4.297)	0.027	1.955 (0.951-4.019)	0.068
Preoperative BMI* (kg/m ²), per 1 kg/m ²	0.907 (0.850-0.968)	0.003		
Preoperative SMI** (cm^2/m^2), per 1 cm^2/m^2	0.981 (0.956-1.006)	0.14		
Preoperative sarcopenia***	2.138 (1.442-3.170)	< 0.001	1.831 (1.203-2.788)	0.005
$ASA-PS^{\#}, \geq 3$	0.787 (0.247-2.506)	0.69		
Cancer type (Adenocarcinoma)	1.637 (0.930-2.881)	0.087		
Preoperative Treatment, present	1.074 (0.725-1.590)	0.72		
Pathological findings				
pT, 3 or 4	2.462 (1.655-3.641)	< 0.001	2.229 (1.456-3.413)	< 0.001
pN, positive	2.149 (1.436-3.215)	< 0.001	1.650 (1.075-2.531)	0.022
pStage, III or IV	2.376 (1.600-3.528)	< 0.001		
Operation time, per 1minute	0.998 (0.996-0.999)	0.021		
Blood loss, per 1 ml	1.001 (1.000-1.001)	0.018	1.000 (0.999-1.001)	0.11
Morbidity				
Anastomotic leakage	1.238 (0.642-2.457)	0.54		
RLNP ^{##}	1.044 (0.632-1.725)	0.87		
Pneumonia	1.290 (0.855-1.944)	0.23		
BMI change, per 1%	0.999 (0.974-1.024)	0.92		
SMI reduction, massive	4.767 (3.176-7.152)	< 0.001	5.405 (3.514-8.314)	< 0.001

*BMI Body mass index, **SMI skeletal mass index, *** Preoperative sarcopenia SMI<52.4 cm/m² in male and SMI<38.5 cm/m² in female, #ASA-PS, American Society of Anesthesiologists-physical status, ##RLNP Recurrent laryngeal nerve palsy.

Table 3. Univariate and multivariate analysis of risk factors for relapse-free survival

	Univariate Analys	is	Multivariate Analy	sis
Variables	Hazard ratio (95% CI)	p-value	Hazard ratio (95% CI)	p-value
Age (year), per 1 year	1.091 (1.051-1.133)	< 0.001	1.106 (1.063-1.150)	< 0.001
Gender (male)	1.989 (1.069-3.700)	0.030		
Preoperative BMI* (kg/m ²), per 1 kg/m ²	0.916 (0.863-0.973)	0.004		
Preoperative SMI** (cm^2/m^2), per 1 cm^2/m^2	0.979 (0.956-1.002)	0.074		
Preoperative sarcopenia***	2.282 (1.584-3.287)	< 0.001	1.933 (1.323-2.823)	< 0.001
ASA-PS [#] , ≥ 3	0.720 (0.227-2.284)	0.58		
Cancer type (Adenocarcinoma)	1.847 (1.104-3.092)	0.020	1.796 (1.041-3.096)	0.035
Preoperative Treatment, present	1.326 (0.919-1.913)	0.13	1.390 (0.914-2.116)	0.12
Pathological findings				
pT, 3 or 4	2.498 (1.736-3.594)	< 0.001	2.063 (1.384-3.075)	< 0.001
pN, positive	2.367 (1.627-3.442)	< 0.001	1.905 (1.286-2.823)	0.001
pStage, III or IV	2.511 (1.738-3.629)	< 0.001		
Operation time, per 1minute	0.999 (0.997-1.000)	0.071		
Blood loss, per 1 ml	1.001 (1.000-1.001)	0.033		
Morbidity				
Anastomotic leakage	1.421 (0.763-2.647)	0.27		
RLNP ^{##}	1.042 (0.659-1.648)	0.86		
Pneumonia	1.308 (0.892-1.918)	0.17		
BMI change, per 1%	0.992 (0.970-1.016)	0.54		
SMI reduction, massive	4.818 (3.303-7.028)	< 0.001	5.070 (3.414-7.532)	< 0.001

*BMI Body mass index, **SMI skeletal mass index, *** Preoperative sarcopenia SMI<52.4 cm/m² in male and SMI<38.5 cm/m² in female, #ASA-PS, American Society of Anesthesiologists-physical status, ##RLNP Recurrent laryngeal nerve palsy. Table 4. Risk factors for massive SMI reduction

	Univariate Analy	sis	Multivariate Analy	sis
Variables	Odds ratio (95% CI)	p-value	Odds ratio (95% CI)	p-value
Age (year) per 1 year	1.030 (0.977-1.080)	0.28		
Gender (male)	1.110 (0.581-2.110)	0.76		
Preoperative BMI* (kg/m ²), per 1 kg/m ²	0.945 (0.873-1.020)	0.16	0.931 (0.860-1.010)	0.082
Preoperative SMI** (cm^2/m^2), per 1 cm^2/m^2	0.995 (0.964-1.030)	0.75		
Preoperative sarcopenia***	1.350 (0.828-2.190)	0.23		
$ASA-PS^{\#}, \geq 3$	0.787 (0.247-2.506)	0.69	0.216 (0.026-1.790)	0.16
Cancer type (Adenocarcinoma)	2.030 (0.962-4.290)	0.063	2.160 (1.010-4.650)	0.048
Preoperative Treatment, present	1.074 (0.725-1.590)	0.72		
Pathological findings				
pT, 3 or 4	1.030 (0.624-1.700)	0.91		
pN, positive	1.570 (0.979-2.510)	0.061	1.700 (1.050-2.750)	0.032
pStage, III or IV	1.160 (0.690-1.950)	0.58		
Complications, present				
Anastomotic leakage	0.933 (0.368-2.364)	0.89		
RLNP ^{##}	0.919 (0.509-1.660)	0.78		
Pneumonia	1.053 (0.635-1.746)	0.84		

37

38

*BMI Body mass index, **SMI skeletal mass index, *** Preoperative sarcopenia SMI<52.4 cm/m² in male and SMI<38.5 cm/m² in female, #ASA-PS, American Society of Anesthesiologists-physical status, ## RLNP Recurrent laryngeal nerve palsy.

39

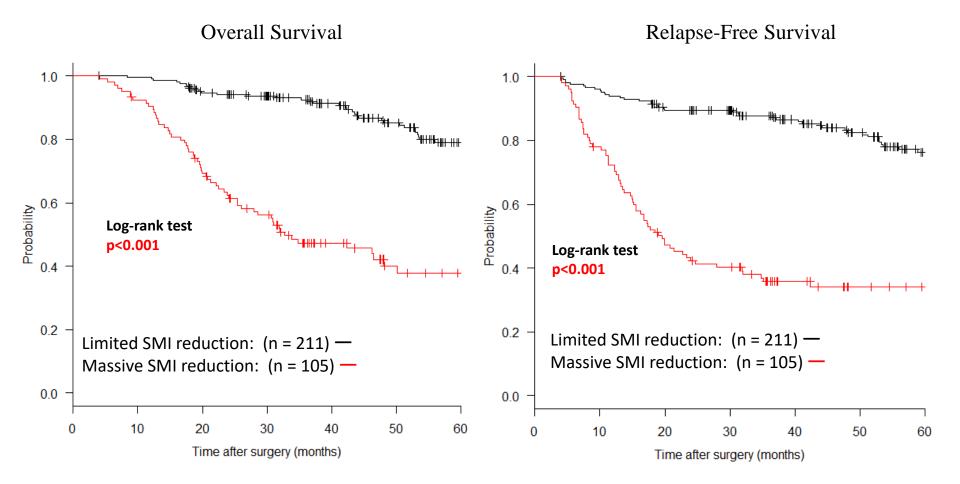


Figure 1b

1 Synopsis

- 2 We investigated an influence of skeletal muscle loss during the early postoperative period on
- 3 the prognosis in elderly patients who underwent oncologic esophagectomy. The existence of
- 4 massive skeletal muscle reduction (>9.13%) was an independent predictor of worse prognosis

5 and recurrence.

1 ABSTRACT

 $\mathbf{2}$ Background: Skeletal muscle loss during the early postoperative period frequently occurs during post-esophagectomy. Preoperative sarcopenia is a known prognostic factor. However, 3 the prognostic significance of postoperative skeletal muscle loss remains unclear. To clarify the 4 impact of skeletal muscle loss during the early postoperative period on the prognosis of elderly $\mathbf{5}$ patients undergoing esophagectomy. 6 **Methods**: We included 316 patients (age ≥ 65) who underwent esophagectomy. The skeletal 7muscle index (SMI) at the third lumber vertebra's bottom level was measured using computed 8 tomography (CT) pre-surgery and 4 months after surgery. The SMI reduction rate, patient's 9 prognosis, and recurrence rates were evaluated. 10 **Results**: The SMI reduction rates in tertiles were <1.25% in the first tertile (t1, n = 105), 11 between 1.25% and 9.13% in the second tertile (t2, n = 106), and >9.13% in the third tertile (t3, 12n = 105). Both relapse-free survival (RFS) and overall survival (OS) in t3 were significantly 13worse than those in t1 and t2 (p < 0.001). Therefore, we defined t3 as the massive reduction 14(MR) group and t1 and t2 as the limited reduction (LR) group. By univariate analysis, both RFS 15and OS were significantly poorer in the MR group than in LR. By multivariate analysis, the 16 massive skeletal muscle loss during the early postoperative period was an independent factor 17

18 for both RFS and OS.

19 Conclusions: Early postoperative skeletal muscle loss predicts both recurrence and poor

- 1 survival.
- $\mathbf{2}$
- 3

1 INTRODUCTION

2	Esophagectomy for esophageal cancer is highly invasive and poses a high risk for
3	postoperative morbidity and mortality ^{1,2} . Additionally, esophageal cancer is known to have a
4	high recurrence rate and a poor prognosis ³⁻⁵ . Sarcopenia, which is defined as the progressive
5	and generalized loss of skeletal mass and strength ⁶ , has been reported to be a predictor of
6	postoperative respiratory complications after esophagectomy ⁷ . It has been recently shown that
7	preoperative low skeletal muscle mass represents a factor for poor prognosis in esophageal
8	cancer patients >65 years ⁸ . Furthermore, several recent studies have found that loss of skeletal
9	muscle mass during neoadjuvant therapy was linked to a worse prognosis ^{9,10} .
10	During the early postoperative period, it has been shown that esophagectomized
11	patients commonly undergo body weight loss ¹¹ . However, only few studies investigated the
12	changes in skeletal muscle mass during the early post-esophagectomy period. To date, the
13	influence of skeletal muscle loss on the prognosis of esophagectomized patients remains unclear.
14	Earlier reports in cancer patients have directly correlated the skeletal muscle volume at the level
15	of the third lumber vertebra (L3) with the entire body skeletal muscle mass ^{12,13} . On the basis
16	of these findings, changes in the skeletal muscle mass can be evaluated by comparing
17	preoperative and postoperative computed tomography (CT) images.
18	The purpose of this retrospective study is to clarify whether the skeletal muscle loss

18 The purpose of this retrospective study is to clarify whether the skeletal muscle loss 19 during the early postoperative period influenced recurrence and survival post-esophagectomy 1 for esophageal cancer.

 $\mathbf{2}$

3 MATERIALS AND METHODS

4 Patients

We enrolled in the present study 384 consecutive patients (≥ 65 years old) with $\mathbf{5}$ esophageal cancer who underwent R0 esophagectomy at The Cancer Institute Hospital of 6 Japanese Foundation for Cancer Research (Tokyo, Japan). The study period was between 7January 2008 and December 2016. A total of 68 patients were excluded from the study. The 8 exclusion criteria were as follows: patients who did not undergo CT both within 3 months pre-9 10 surgery or 4 months post-surgery, patients who underwent simultaneous pharyngolaryngectomy, and patients who experienced tumor recurrence within 4 months. Finally, 316 patients were 11 eligible (Supplemental Figure 1). Clinicopathological data, including patient background, 12tumor stage, histopathological features, postoperative complications, survival, and recurrence. 13 Preoperative sarcopenia was defined as SMI < 52.4 cm^2/m^2 in male and SMI < 38.5 cm^2/m^2 in 14female, according to Prado's criteria¹⁴. Tumor stage was defined as the pathological stage and 15classified according to the 7th TNM classification of the Union for International Cancer Control 16 ¹⁵. The study protocol was approved by our institutional review board (2018-1175). 17

18

19 Measurement of skeletal muscle index (SMI)

1	CT scan was performed within 3 months pre-surgery and 4 months post-surgery (Light
2	Speed, General Electric, Milwaukee, WI). SMI assessment was performed using the synapse
3	VINCENT image analysis system (Fujifilm Medical, Tokyo, Japan). An axial image at the level
4	of L3 was used for the measurement (Supplemental Figure 2). We measured the cross-sectional
5	area of the total skeletal muscle volume (cm ²), and then, the SMI (cm ² /m ²) was calculated using
6	the following formula: total skeletal muscle volume (L3)/height (m) ² . Additionally, the SMI
7	reduction rate was calculated as follows: (pre-SMI – post-SMI)/pre-SMI \times 100%.
8	
9	Statistical analysis
10	Data were shown as the mean \pm standard deviation or number (%). Survival analysis
10 11	Data were shown as the mean ± standard deviation or number (%). Survival analysis was performed using the Kaplan–Meier method. The statistical difference was evaluated using
11	was performed using the Kaplan-Meier method. The statistical difference was evaluated using
11 12	was performed using the Kaplan–Meier method. The statistical difference was evaluated using the log-rank test. We used the Cox proportional hazards model to clarify the covariates' effects
11 12 13	was performed using the Kaplan–Meier method. The statistical difference was evaluated using the log-rank test. We used the Cox proportional hazards model to clarify the covariates' effects on survival. We considered as statistically significant a probability level of 0.05. All statistical
11 12 13 14	was performed using the Kaplan–Meier method. The statistical difference was evaluated using the log-rank test. We used the Cox proportional hazards model to clarify the covariates' effects on survival. We considered as statistically significant a probability level of 0.05. All statistical analyses were performed using EZR (Saitama Medical Center, Jichi Medical University,
 11 12 13 14 15 	was performed using the Kaplan–Meier method. The statistical difference was evaluated using the log-rank test. We used the Cox proportional hazards model to clarify the covariates' effects on survival. We considered as statistically significant a probability level of 0.05. All statistical analyses were performed using EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan). This platform is a graphical user interface for R (The R Foundation for

19 **RESULTS**

1 SMI reduction and patients' survival

 $\mathbf{2}$ We planned on estimating the prognostic significance of the SMI reduction rate. We first divided the patients into quartiles according to the percentiles of SMI reduction rate. We 3 then compared the risk for overall survival (OS) using both known risk factors and each quartile, 4 since the cut-off value of the SMI reduction rate has not been decided. As described in $\mathbf{5}$ Supplemental Table 1, multivariate Cox proportional hazard analysis with all variables showed 6 that the risk for OS increased with age, $pT \ge 3$, and the fourth quartile of SMI reduction. 7Additionally, our results suggest that hazard ratio increased in the third quartile, which ranged 8 between 50 and 75 percentile. On the basis of these findings, we classified the patients into 9 10 tertiles based on the percentiles of SMI reduction rate. Specifically, the first tertile (t1, n = 105)had an SMI reduction rate of <1.25%, the second tertile (t2, n = 106) had an SMI reduction rate 11 between 1.25% and 9.13%, and the third tertile (t3, n = 105) had an SMI reduction rate of 12>9.13%. Figure 1a shows the overall and relapse-free survivals (RFS) among the tertiles. We 13found that the survivals of t3 were significantly poorer than those of t1 and t2. We then defined 14t3 as "massive SMI reduction (MR) group" and t1-2 as "limited SMI reduction (LR) group." 15Figure 1b describes the overall and RFSs between the groups. We found that the MR group's 16 survival was significantly poorer than that of the LR group. 17

18

Difference in the clinicopathologic, operative, and postoperative findings

1	Table 1 shows the patients' clinicopathologic, operative, and postoperative
2	backgrounds. The mean age was 71.1 years, and 83.9% was male. There were no significant
3	differences in the clinicopathologic, operative, and postoperative findings between the groups
4	with the exception of blood loss and pN status. Blood loss was significantly greater in the MR
5	group than in the LR ($p = 0.028$), and the prevalence of node positive cases was significantly
6	higher in the MR group than in the LR ($p = 0.023$).
7	
8	Effect of SMI massive reduction and other factors on OS and RFS
9	The prognostic factors for OS according to Cox proportional hazard analysis were
10	shown in Table 2. Univariate revealed that age, gender, preoperative BMI, preoperative
11	sarcopenia, $pT \ge 3$, $pN \ge 1$, $pStage \ge III$, operation time, blood loss, and massive SMI reduction
12	were significant variables influencing a worse OS. Multivariate analysis demonstrated that the
13	significant factors were the following: age [p < 0.001, HR 1.116, 95% CI 1.072–1.162],
14	preoperative sarcopenia [p = 0.005, HR 1.831, 95% CI 1.203–2.788], pT \ge 3 [p < 0.001, HR
15	2.229, 95% CI 1.456–3.413], pN \geq 1 [p = 0.022, HR 1.650, 95% CI 1.075–2.531], and massive
16	SMI reduction [p < 0.001, HR 5.405, 95% CI 3.514–8.314].
17	As shown in Table 3, univariate analysis revealed that the significant risk factors for

18 recurrence were age, gender, preoperative BMI, preoperative sarcopenia, cancer type 19 (adenocarcinoma), $pT \ge 3$, $pN \ge 1$, $pStage \ge III$, blood loss, and massive SMI reduction.

1	Multivariate analysis demonstrated that the independent factors were as follows: age [$p < 0.001$,
2	HR 1.106, 95% CI 1.063–1.150], preoperative sarcopenia [p < 0.001, HR 1.933, 95% CI 1.323–
3	2.823], cancer type [p = 0.035, HR 1.796, 95% CI 1.041–3.096], pT \ge 3 [p < 0.001, HR 2.063,
4	95% CI 1.384–3.075], pN \geq 1 [p = 0.001, HR 1.905, 95% CI 1.286–2.823], and massive SMI
5	reduction [p < 0.001, HR 5.070, 95% CI 3.414–7.532]. Neither preoperative BMI nor
6	preoperative sarcopenia was associated with MR, although preoperative sarcopenia was
7	significantly associated with BMI (p<0.0001).

8

9 Risk factors of massive SMI reduction

Our results showed that massive reduction of SMI worsened both OS and RFS. Specifically, we investigated the risk factors of massive SMI reduction using a logistic regression model (Table 4). Univariate analysis found no significant risk factor, and cancer type (adenocarcinoma) and $pN \ge 1$ tended to associate with massive SMI reduction. However, multivariate analysis demonstrated that $pN \ge 1$ and cancer type (adenocarcinoma) correlated with massive SMI reduction ($pN \ge 1$ [p = 0.032, OR 1.700, 95% CI 1.050–2.750] and cancer type [p = 0.048, OR 2.160, 95% CI 1.010–4.650], respectively).

17

18 DISCUSSION

19

In the present study, we found that massive SMI reduction during the early

postoperative period after esophagectomy negatively influenced tumor recurrence and survival in elderly patients with esophageal cancer. Sarcopenia is a well-known prognosticator of elderly cancer patients, including those with esophageal cancer. However, our study is the first to demonstrate the influence of early postoperative skeletal muscle loss on the prognosis of elderly esophageal cancer patients.

Body weight loss during the early postoperative period is frequently observed among 6 patients who underwent esophagectomy. A prospective cohort study revealed that 63.7% of 7patients suffered from weight loss more than 10% in 6 months after esophagectomy ¹⁷, while 8 two retrospective studies showed mean weight loss rates of 10.95%¹⁸ and 12.9% one year post-9 esophagectomy¹⁹. Numerous potential causative factors for weight loss post-esophagectomy 10 can be taken into account. A significant link is reported between appetite loss, eating difficulties, 11 and odynophagia with postoperative weight loss ¹⁷, while preoperative weight and vocal cord 12palsy were reported to be independent risk factors for severe postoperative weight loss ¹⁹. 13Pyloroplasty's absence is reported to be the sole risk factor for >10% weight loss one year post-14esophagectomy¹⁸. Several studies showed that post-esophagectomy patients experience a 15severe decrease in ghrelin secretion 20,21 and a significant increase in plasma glucagon-like 16 peptide-a, which induces early satiety¹¹. 17

18 The extent of body weight loss post-esophagectomy differs among individuals, and the 19 absence of weight loss was reported to be an independent factor associated with 5-year survival ²². In the present study, we revealed that SMI at 4 months after esophagectomy differed among
 the elderly and found the massive reduction of SMI was an independent worse prognostic factor.
 None of the patients included in the study underwent pyloroplasty. Furthermore, postoperative
 complications, including recurrent laryngeal nerve palsy, didn't affect the extent of SMI
 reduction.

The presence of sarcopenia has been reported to be an independent predictor of lower 6 disease-free survival and OS among patients with many types of cancer ^{14,23,24}. Also in our study, 7sarcopenia was an independent factor for both OS and RFS. It is reported that loss of skeletal 8 muscle mass during neoadjuvant chemoradiotherapy was predictive of postoperative mortality 9 in stage III–IV subgroups ¹⁰. A correlation between decreased skeletal muscle mass following 10 neoadjuvant therapy and poor prognosis was also reported ²⁵. Additionally, skeletal muscle 11 mass during neoadjuvant treatment but not preoperative sarcopenia correlated with worse OS⁹. 12Recent studies have reported on the negative prognostic impact of postoperative skeletal muscle 13 loss in numerous cancer types including gastric²⁶, non-small cell lung^{27,28}, urothelial²⁹, renal 14 30 , rectal 31 , and esophageal 32 . 15

16 To date, the mechanism of association between loss of skeletal muscle and poor 17 prognosis in cancer patients remains unclear. One possible explanation is that tumor-derived 18 cytokines impair myogenesis. It is reported that Proteolysis Inducing Factor from cancer cells 19 induces skeletal muscle wasting through the activation of the ubiquitin-mediated pathway ^{33,34}.

1	TNF- α produced by immune cells affected the decrease of skeletal muscle by suppressing
2	MyoD messenger RNA $^{35}\!\!$, while TNF- α , IL-1, and IL-6 from malignant tumors affected
3	cachexia ³⁶ . The existence of a microscopic residual tumor may be a cause of skeletal muscle
4	wasting. In this study, the prevalence of node-positive cases was significantly higher in the MR
5	group than in the LR. Especially, the prevalence of pN3 was much higher in the MR group than
6	in the LR. It is reported that the probability of systemic disease exceeded 50% when 3 or more
7	positive nodes were present and approached 100% when 8 or more were present ³⁷ . Therefore,
8	the MR group is estimated to include more patients with systemic disease.
9	The operative blood loss was significantly greater in the MR group than in the LR. We
10	could not find out the factors possibly affecting blood loss, such as the operative approach, the
11	type of esophagectomy, and the extent of lymph node dissection, between the groups. Although
12	meta-analysis revealed autologous blood transfusion was associated with significantly worse
13	long-term survival in patients undergoing esophagectomy ³⁸ , the prevalence of patients who
14	underwent blood transfusion was comparable between the groups.
15	The prevalence of adenocarcinoma was significantly higher in the MR group than in
16	the LR group. In this study, the surgical procedures were similar between adenocarcinoma and
17	squamous cell carcinoma (SCC), and the incidence of lymph node metastasis was similar
18	between them (48.9% vs. 44.6%). However, the prevalence of pN2 or pN3 tended to be higher
19	in adenocarcinoma (29.0%) than in SCC (14.7%) ($p = 0.067$), suggesting that there were more

1	patients with systemic disease in adenocarcinoma than in SCC ³⁷ . That might be why there were
2	more patients with adenocarcinoma in the MR group than in the LR.
3	Recently, skeletal muscle has been identified as a secretory organ ³⁹ . Specifically,
4	muscle fibers produce, express, and release cytokines and other peptides. Additionally, muscle
5	fibers communicate with other organs (e.g., adipose tissue, liver pancreas, and brain).
6	Additionally, the skeletal muscle contains a high number of leukocytes. Specifically, the latter
7	comprise various cell types, including the following: CD8+ cytotoxic T cells, regulatory T cells,
8	neutrophils, and eosinophils. Such cells act as the muscle immune system ⁴⁰ . When skeletal
9	muscle mass is lost, the immunity of cancer patients is impaired, leading to cancer recurrence.

On the basis of this knowledge, it is thought that interventions to preserve skeletal muscle
volume after esophagectomy may improve elderly patients' survival.

Numerous studies which investigated the effect of post-discharge enteral feeding failed 12to demonstrate the improvement of postoperative weight loss ^{41, 42}. Anamorelin is an orally 13active, high-affinity, selective ghrelin-receptor agonist. Two recent RCTs demonstrated that 14anamorelin significantly increased lean body mass in advanced non-small cell lung carcinoma 15cachexic patients ⁴³. Meanwhile, the postoperative use of rikkunshito, a traditional Japanese 16 herbal medicine, was reported to increase the acyl ghrelin level after a 48-week treatment. 17Furthermore, it has been shown to improve body weight loss post-esophagectomy ⁴⁴. 18Interventions modulating serum ghrelin levels may successfully minimize skeletal muscle loss 19

1 post-esophagectomy.

2	Several limitations can be found in our study. First, this was a retrospective and
3	conducted in a single institution. Second, no standard method was used in SMI evaluation, and
4	the cut-off value of the SMI reduction rate differed among the studies. Further multicenter
5	prospective studies are required to confirm our results. Additionally, there is the need to evaluate
6	the efficacy of the intervention to minimize SMI reduction and methodology standardization in
7	SMI evaluation among the institutes.
8	
9	CONCLUSION
10	We observed that massive SMI reduction was significantly correlated with recurrence
11	and poor prognosis in elderly patients who underwent curative esophagectomy for esophageal
12	cancer. We believe that early postoperative skeletal muscle loss represents a useful predictor of
13	both recurrence and poor survival.
14	
15	ACKNOWLEDGMENTS
16	None declared
17	
18	
19	

1 **References**

2	1.	Fujita H, Kakegawa T, Yamana H, et al. Mortality and morbidity rates, postoperative
3		course, quality of life, and prognosis after extended radical lymphadenectomy for
4		esophageal cancer. Comparison of three-field lymphadenectomy with two-field
5		lymphadenectomy. Ann Surg. 1995;222(5):654-662.
6	2.	Takeuchi H, Miyata H, Gotoh M, et al. A risk model for esophagectomy using data of
7		5354 patients included in a Japanese nationwide web-based database. Ann Surg.
8		2014;260(2):259-266.
9	3.	Mariette C, Piessen G, Triboulet JP. Therapeutic strategies in oesophageal carcinoma:
10		role of surgery and other modalities. The Lancet Oncology. 2007;8(6):545-553.
11	4.	Baba Y, Yoshida N, Shigaki H, et al. Prognostic Impact of Postoperative Complications
12		in 502 Patients With Surgically Resected Esophageal Squamous Cell Carcinoma: A
13		Retrospective Single-institution Study. Ann Surg. 2016;264(2):305-311.
14	5.	Saeki H, Tsutsumi S, Tajiri H, et al. Prognostic Significance of Postoperative
15		Complications After Curative Resection for Patients With Esophageal Squamous Cell
16		Carcinoma. Ann Surg. 2017;265(3):527-533.
17	6.	Rosenberg IH. Sarcopenia: origins and clinical relevance. The Journal of nutrition.
18		1997;127(5 Suppl):990s-991s.
19	7.	Ida S, Watanabe M, Yoshida N, et al. Sarcopenia is a Predictor of Postoperative

1		Respiratory Complications in Patients with Esophageal Cancer. Annals of surgical
2		oncology. 2015;22(13):4432-4437.
3	8.	Nakashima Y, Saeki H, Nakanishi R, et al. Assessment of Sarcopenia as a Predictor of
4		Poor Outcomes After Esophagectomy in Elderly Patients With Esophageal Cancer. Ann
5		Surg. 2018;267(6):1100-1104.
6	9.	Jarvinen T, Ilonen I, Kauppi J, Salo J, Rasanen J. Loss of skeletal muscle mass during
7		neoadjuvant treatments correlates with worse prognosis in esophageal cancer: a
8		retrospective cohort study. World journal of surgical oncology. 2018;16(1):27.
9	10.	Reisinger KW, Bosmans JW, Uittenbogaart M, et al. Loss of Skeletal Muscle Mass
10		During Neoadjuvant Chemoradiotherapy Predicts Postoperative Mortality in
11		Esophageal Cancer Surgery. Annals of surgical oncology. 2015;22(13):4445-4452.
12	11.	Elliott JA, Docherty NG, Eckhardt HG, et al. Weight Loss, Satiety, and the Postprandial
13		Gut Hormone Response After Esophagectomy: A Prospective Study. Ann Surg.
14		2017;266(1):82-90.
15	12.	Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE. A practical
16		and precise approach to quantification of body composition in cancer patients using
17		computed tomography images acquired during routine care. Applied physiology,
18		nutrition, and $metabolism = Physiologie$ $appliquee$, $nutrition$ et $metabolisme$.
19		2008;33(5):997-1006.

1	13.	Yoshizumi T, Shirabe K, Nakagawara H, et al. Skeletal muscle area correlates with body
2		surface area in healthy adults. Hepatology research : the official journal of the Japan
3		Society of Hepatology. 2014;44(3):313-318.
4	14.	Prado CM, Lieffers JR, McCargar LJ, et al. Prevalence and clinical implications of
5		sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal
6		tracts: a population-based study. The Lancet Oncology. 2008;9(7):629-635.
7	15.	Sobin LH, Compton CC. TNM seventh edition: what's new, what's changed:
8		communication from the International Union Against Cancer and the American Joint
9		Committee on Cancer. 2010;116(22):5336-5339.
10	16.	Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for medical
11		statistics. Bone marrow transplantation. 2013;48(3):452-458.
12	17.	Martin L, Lagergren J, Lindblad M, Rouvelas I, Lagergren P. Malnutrition after
13		oesophageal cancer surgery in Sweden. The British journal of surgery.
14		2007;94(12):1496-1500.
15	18.	Harada K, Yoshida N, Baba Y, et al. Pyloroplasty may reduce weight loss 1 year after
16		esophagectomy. Dis Esophagus. 2018;31(3).
17	19.	Park SY, Kim DJ, Suh JW, Byun GE. Risk Factors for Weight Loss 1 Year After
18		Esophagectomy and Gastric Pull-up for Esophageal Cancer. Journal of gastrointestinal
19		surgery : official journal of the Society for Surgery of the Alimentary Tract.

1	2018;22(7):1137-1143
---	----------------------

2	20.	Doki Y, Takachi K, Ishikawa O, et al. Ghrelin reduction after esophageal substitution
3		and its correlation to postoperative body weight loss in esophageal cancer patients.
4		Surgery. 2006;139(6):797-805.
5	21.	Miyazaki T, Tanaka N, Hirai H, et al. Ghrelin level and body weight loss after
6		esophagectomy for esophageal cancer. The Journal of surgical research.
7		2012;176(1):74-78.
8	22.	Liu J, Xie X, Zhou C, Peng S, Rao D, Fu J. Which factors are associated with actual 5-
9		year survival of oesophageal squamous cell carcinoma? European journal of cardio-
10		thoracic surgery : official journal of the European Association for Cardio-thoracic
11		<i>Surgery</i> . 2012;41(3):e7-11.
12	23.	Martin L, Birdsell L, Macdonald N, et al. Cancer cachexia in the age of obesity: skeletal
13		muscle depletion is a powerful prognostic factor, independent of body mass index.
14		Journal of clinical oncology : official journal of the American Society of Clinical
15		Oncology. 2013;31(12):1539-1547.
16	24.	Harimoto N, Shirabe K, Yamashita YI, et al. Sarcopenia as a predictor of prognosis in
17		patients following hepatectomy for hepatocellular carcinoma. The British journal of
18		surgery. 2013;100(11):1523-1530.

19 25. Liu J, Motoyama S, Sato Y, et al. Decreased Skeletal Muscle Mass After Neoadjuvant

1	Therapy Correlates with Poor Prognosis in Patients with Esophageal Cancer. Anticancer
2	research. 2016;36(12):6677-6685.

- 3 26. Huang DD, Ji YB, Zhou DL, et al. Effect of surgery-induced acute muscle wasting on
- 4 postoperative outcomes and quality of life. *The Journal of surgical research*.
 5 2017;218:58-66.
- 6 27. Takamori S, Toyokawa G, Okamoto T, et al. Clinical Impact and Risk Factors for
 7 Skeletal Muscle Loss After Complete Resection of Early Non-small Cell Lung Cancer.
- 8 *Annals of surgical oncology.* 2018;25(5):1229-1236.
- 9 28. Tsukioka T, Izumi N, Kyukwang C, et al. Loss of Muscle Mass is a Novel Predictor of
- 10 Postoperative Early Recurrence in N2-Positive Non-Small-Cell Lung Cancer. Annals of
- 11 thoracic and cardiovascular surgery : official journal of the Association of Thoracic
- 12 *and Cardiovascular Surgeons of Asia.* 2018;24(3):121-126.
- 13 29. Miyake M, Morizawa Y, Hori S, et al. Clinical impact of postoperative loss in psoas
- major muscle and nutrition index after radical cystectomy for patients with urothelial
 carcinoma of the bladder. *BMC cancer*. 2017;17(1):237.
- 16 30. Fukushima H, Nakanishi Y, Kataoka M, Tobisu KI, Koga F. Postoperative Changes in
- 17 Skeletal Muscle Mass Predict Survival of Patients With Metastatic Renal Cell
- 18 Carcinoma Undergoing Cytoreductive Nephrectomy. *Clinical genitourinary cancer.*

19 2017;15(2):e229-e238.

1	31.	Takeda Y, Akiyoshi T, Matsueda K, et al. Skeletal muscle loss is an independent negative
2		prognostic factor in patients with advanced lower rectal cancer treated with neoadjuvant
3		chemoradiotherapy. PloS one. 2018;13(4):e0195406.
4	32.	Mayanagi S, Tsubosa Y, Omae K, et al. Negative Impact of Skeletal Muscle Wasting
5		After Neoadjuvant Chemotherapy Followed by Surgery on Survival for Patients with
6		Thoracic Esophageal Cancer. Annals of surgical oncology. 2017;24(12):3741-3747.
7	33.	George J, Cannon T, Lai V, et al. Cancer cachexia syndrome in head and neck cancer
8		patients: Part II. Pathophysiology. Head & neck. 2007;29(5):497-507.
9	34.	Baracos VE. Cancer-associated cachexia and underlying biological mechanisms.
10		Annual review of nutrition. 2006;26:435-461.
11	35.	Guttridge DC, Mayo MW, Madrid LV, Wang CY, Baldwin AS, Jr. NF-kappaB-induced
12		loss of MyoD messenger RNA: possible role in muscle decay and cachexia. Science
13		(New York, NY). 2000;289(5488):2363-2366.
14	36.	Sorensen J. Lung Cancer Cachexia: Can Molecular Understanding Guide Clinical
15		Management? Integrative cancer therapies. 2018;17(3):1000-1008.
16	37.	Rice TW, Ishwaran H, Hofstetter WL, et al. Esophageal Cancer: Associations With
17		(pN+) Lymph Node Metastases. Annals of surgery. 2017;265(1):122-129.
18	38.	Boshier PR, Ziff C, Adam ME, Fehervari M, Markar SR, Hanna GB. Effect of
19		perioperative blood transfusion on the long-term survival of patients undergoing

1		esophagectomy for esophageal cancer: a systematic review and meta-analysis. Diseases
2		of the esophagus : official journal of the International Society for Diseases of the
3		Esophagus. 2018;31(4).
4	39.	Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a
5		secretory organ. Nature reviews Endocrinology. 2012;8(8):457-465.
6	40.	Tidball JG. Regulation of muscle growth and regeneration by the immune system.
7		Nature reviews Immunology. 2017;17(3):165-178.
8	41.	Froghi F, Sanders G, Berrisford R, et al. A randomised trial of post-discharge enteral
9		feeding following surgical resection of an upper gastrointestinal malignancy. Clinical
10		nutrition (Edinburgh, Scotland). 2017;36(6):1516-1519.
11	42.	Healy LA, Ryan A, Doyle SL, et al. Does Prolonged Enteral Feeding With Supplemental
12		Omega-3 Fatty Acids Impact on Recovery Post-esophagectomy: Results of a
13		Randomized Double-Blind Trial. Ann Surg. 2017;266(5):720-728.
14	43.	Temel JS, Abernethy AP, Currow DC, et al. Anamorelin in patients with non-small-cell
15		lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomised,
16		double-blind, phase 3 trials. The Lancet Oncology. 2016;17(4):519-531.
17	44.	Nakamura M, Nakamori M, Ojima T, et al. The effects of rikkunshito on body weight
18		loss after esophagectomy. The Journal of surgical research. 2016;204(1):130-138.

19

1 Figure legends

2	Fig 1. Kaplan-Meier curves stratified by SMI reduction rate. a: Overall survival and relapse-
3	free survival, classified into tertiles depending on the SMI reduction rate. Survival was
4	significantly worse in group t3 than in other groups. b: Overall survival and relapse-free
5	survival, stratified by massive or limited SMI reduction. Overall survival and relapse-free
6	survival was significantly worse in massive SMI reduction group than in limited SMI
7	reduction group.
8	
9	Supplemental Fig 1. Study population.
10	
11	Supplemental Fig 2. The method to assess skeletal muscle mass (green area); skeletal muscle
12	index = skeletal muscle mass / height ² (cm ² / m ²)