Systematic alanine scanning of PAX8 paired domain reveals

functional importance of the N-subdomain

Short title: Alanine scanning mutagenesis of PAX8

Authors:

Megumi Iwahashi^{1,2} and Satoshi Narumi¹

Affiliations:

¹ Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan

² Department of Pediatrics, The Jikei University School of Medicine, Tokyo 105-8461, Japan.

Correspondence:

Satoshi Narumi, M.D., Ph.D.

Department of Molecular Endocrinology, National Research Institute for Child Health and Development

2-10-1 Okura, Setagaya-ku, Tokyo 157-8535, Japan.

TEL: +81-3-3416-0181

E-mail: narumi-s@ncchd.go.jp

Key words: paired domain, PAX, PAX8, alanine scanning mutagenesis

Funding: This work was supported by JSPS KAKENHI (Grant Number 15K09630) from the Japan Society for the Promotion of Science.

Word count: abstract, 249; text, 2,535; figures 2; table 2.

1 Abstract

2	Thyroid-specific transcription factor PAX8 has an indispensable role in the thyroid gland development,
3	which is evidenced by the facts that PAX8/Pax8 mutations cause congenital hypothyroidism in humans and
4	mice. More than 90% of known PAX8 mutations were located in the paired domain, suggesting the central
5	role of the domain in exerting the molecular function. Structure-function relationships of PAX8, as well as
6	other PAX family transcription factors, have never been investigated in a systematic manner. Here, we
7	conducted the first alanine-scanning mutagenesis study, in which 132 alanine variants located in the paired
8	domain of PAX8 were created and systematically evaluated <i>in vitro</i> . We found that 76 alanine variants (55%)
9	were loss of function (LOF) variants (defined by <30% activity as compared with wildtype PAX8).
10	Importantly, the distribution of LOF variants were skewed, with more frequently observed in the
11	N-subdomain (65% of the alanine variants in the N-subdomain) than in the C-subdomain (45%). Twelve out
12	of 13 alanine variants in residues that have been affected in patients with congenital hypothyroidism were
13	actually LOF, suggesting that the alanine scanning data can be used to evaluate the functional importance of
14	mutated residues. Using our in vitro data, we tested the accuracy of seven computational algorithms for
15	pathogenicity prediction, showing that they are sensitive but not specific to evaluate on the paired domain
16	alanine variants. Collectively, our experiment-based data would help better understanding of the
17	structure-function relationships of the paired domain, and would provide a unique resource for pathogenicity
18	prediction of future PAX8 variants.

20 Introduction

21	Organ-specific transcription factors play pivotal roles in organogenesis, organ growth, and maintenance of
22	organ functions. As for the thyroid gland, three thyroid-specific transcription factors (TTF), namely PAX8
23	(encoded by PAX8) (Plachov et al. 1990, Zannini et al. 1992), TTF-1 (encoded by NKX2-1) (Guazzi et al.
24	1990, Lazzaro et al. 1991), TTF-2 (encoded by FOXE1) (Zannini et al. 1997), and HEX (encoded by HHEX)
25	(Crompton et al. 1992, Thomas et al. 1998), have been known to play such roles.
26	PAX8 is a member of the PAX gene family, which is characterized by the presence of DNA-binding
27	paired domain. In mice and human, Pax8/PAX8 is expressed in the thyroid from prenatal period to adulthood
28	(Plachov et al. 1990). In cultured cell lines, PAX8 directly regulates the transcription of thyroid-specific
29	genes, such as thyroglobulin (Tg), thyroid peroxidase (TPO) (Di Palma et al. 2003) and the sodium iodide
30	symporter (Ohno et al. 1999). Genetically-engineered Pax8-deficient mice show severe thyroid hypoplasia
31	due to defective proliferation and survival of thyroid precursor cells (Mansouri et al. 1998), indicating the
32	indispensable role of Pax8 in the early organogenesis. In humans, heterozygous PAX8 mutations cause
33	congenital hypothyroidism (CH) with autosomal dominant inheritance. To date, 33 mutation-carrying
34	families harboring a total of 23 distinct PAX8 mutations have been described (Al Taji et al. 2007, Carvalho et
35	al. 2013, Congdon et al. 2001, de Sanctis et al. 2004, Di Palma et al. 2010, Grasberger et al. 2005, Hermanns
36	et al. 2013, Jo et al. 2010, Komatsu et al. 2001, Liu et al. 2017, Lof et al. 2016, Macchia et al. 1998, Meeus
37	et al. 2004, Narumi et al. 2012, Narumi et al. 2010, Narumi et al. 2011, Ramos et al. 2014, Srichomkwun et
38	al. 2016, Tonacchera et al. 2007, Vilain et al. 2001, Zou et al. 2015). Clinical phenotypes of the mutation
39	carriers are variable, ranging from overt CH with severe thyroid hypoplasia to subclinical hypothyroidism

41	Previously reported experimentally-verified PAX8 mutations have been found exclusively in the paired
42	domain, except for one truncating mutation (p.Thr 277*) located outside the domain (de Sanctis et al. 2004).
43	This fact implies the importance of the paired domain in exerting the molecular function of PAX8.
44	Nonetheless, genetic variants located in functionally important domains do not necessarily result in loss of
45	function (LOF) sufficient for disease onset. Hence, when a novel variant is found in a patient, it is necessary
46	to presume its pathogenicity. To this end, a handful of computational algorithms, such as PolyPhen-2
47	(Adzhubei et al. 2010) and SIFT (Kumar et al. 2009), have been used. However, the accuracy of these in
48	silico algorithms remains around about 70% (Thusberg et al. 2011), which is not enough reliable to be used
49	in clinical genetic diagnosis. In this present study, systematic alanine scanning mutagenesis was performed to
50	determine which residues are functionally important. Alanine substitution eliminates side chain interactions
51	without altering main-chain conformation, enabling to assess the contribution of specific residue on the
52	function. We performed systematic alanine scanning mutagenesis that targeted all 132 non-alanine residues
53	of the paired domain of PAX8, and assessed the effects of amino acid alterations <i>in vitro</i> . We also compared
54	in silico algorithms accuracy with use of our in vitro dataset.

56 Materials and Methods

57 Plasmids

58 We used simian virus 40 promoter-driven effector plasmids carrying human PAX8 cDNA that has been

59	previously described (Narumi et al. 2010). We created a total of 132 alanine-substituted, the smallest chiral
60	amino acid, variant PAX8 [Met1Ala to Gln137Ala; five alanine residues (Ala ¹⁹ , Ala ³⁸ , Ala ⁸⁴ , Ala ¹⁰⁴ and
61	Ala ¹¹³) were excluded] using PrimeSTAR Mutagenesis Basal Kit (TaKaRa Bio Inc, Shiga, Japan). We
62	confirmed each alanine mutation substitution by direct sequencing. Alanine scanning enables quick
63	determination of each individual amino acid's contribution to the protein function. The transcriptional
64	activities of PAX8 proteins [wildtype (WT) or alanine variants] were assessed with firefly luciferase
65	reporters that contain the promoter sequence of the human Tg gene corresponding to -284/+39 region
66	(TG-luc) (Narumi et al. 2010), or the promoter sequence of the rat TPO gene corresponding to -1/+426
67	region (Tpo-luc) (Di Palma et al. 2003).

69 Cell culture and transfection

70	HeLa cells were maintained in DMEM supplemented with 100 U/mL penicillin, 100 μ g/mL streptomycin,
71	and 10% fetal bovine serum. Transient transfection was performed with the Lipofectamine 3000 reagent
72	(Thermo Fisher Scientific, Waltham, MA, USA). Cells grown in 96-well plates with 70-80% confluence
73	were transfected with 90 ng of each luciferase reporter (TG-luc or Tpo-luc), and 10 ng of each effector
74	plasmid (empty vector, WT-PAX8 or alanine variant PAX8). Forty-eight hours after transfection, we
75	measured luciferase activities using ONE-Glo Luciferase Assay System (Promega, Madison, WI) according
76	to the manufacture's instruction. Luciferase activities were represented relative to the activity obtained by
77	transfection of WT-PAX8 (set to 100%) and empty vector (set to 0%). Experiments were conducted in

78	quadruplicate, and were repeated at least three times. The activity data were expressed as mean±SEM. Based
79	on the transactivating capacities, the following terms were defined: profound LOF, less than 10.0% activity;
80	moderate LOF, 10.0–29.9% activity; minimal LOF, 30.0-69.9% activity; functionally neutral, 70.0-119.9%
81	activity; hyperfunctioning, equal or more than 120% activity. We considered variants with profound LOF or
82	moderate LOF as disease-causing variants (described as significant LOF).
83	
84	Three-dimensional modeling
85	The three-dimensional modeling structure of PAX8–DNA complex has not been determined to date. Instead,
86	we used crystal structure data of the PAX5-DNA complex to display the positions of the variants,
87	considering the high protein sequence similarity (94% identical in the paired domain) between PAX8 and
88	PAX5. The crystal structure data of PAX5–DNA complex was obtained from protein data bank (ID 1MDM;
89	http://www.rcsb.org/pdb), and was used as a template to visualize the effects of alanine substitutions. The
90	pictures were produced with PyMOL (http://www.pymol.org). Residues that were not identical between
91	PAX8 and PAX5 were not shown. The effect of alanine substitution in the pairing region of PAX8 was
92	shown as color-coded spheres: red, profound LOF; orange, moderate LOF; yellow, minimal LOF; gray,
93	functionally neutral; and blue, hyperfunctioning. Presumed effects of alanine substitution were classified into
94	five categories: (i) loss of hydrogen bond(s) to target DNA; (ii) loss of van der Waals contact(s) to target
95	DNA; (iii) loss of hydrogen bond(s) within PAX8, (iv) loss of van der Waals contact(s) within PAX8; and (v)
96	no recognizable effect on contact to target DNA or within PAX8 ("free sidechain" residues). We used

97	PyMOL to predict hydrogen bonds with a default setting van der Waals contacts were defined based on the
98	distance (3.50 to 3.99 Å) between the Ala sidechains to other carbon molecules (target DNA or other residues
99	of PAX8).

101	Computational prediction of pathogenicity of PAX8 alanine variants
102	The pathogenicity of 132 alanine variants were assessed by following seven computational algorithms:
103	FATHMM (Shihab et al. 2013), MutationAssessor (Reva et al. 2011), MutationTaster (Schwarz et al. 2010),
104	PolyPhen-2 (Adzhubei et al. 2010), PROVEAN (Choi et al. 2012), SIFT (Kumar et al. 2009), and VEST-4
105	(Carter et al. 2013). The accuracy of computational prediction tools was assessed by ROC curves. In this
106	study, a gold standard was defined by the results of <i>in vitro</i> functional assays, in which variants with
107	significant LOF (<i>i.e.</i> , transactivating capacity less than 30%) were considered to be deleterious.
108	
109	Results
110	Transactivating capacities of alanine variants

111	PAX8 is a 450 amino-acids protein that contains a paired domain of Gly ⁹ to Gln ¹³⁷ . To systematically assess
112	the effect of amino acid substitutions in the paired domain and its N-terminal region (Met ¹ to Ser ⁸), 132
113	non-alanine residues were substituted to alanine one by one, and transcriptional activities of each mutant
114	were assessed with two luciferase reporters (TG-luc and Tpo-luc) (Supplementary Table 2). There was a
115	significant correlation between the transactivating capacities for TG-luc and Tpo-luc among the 132 alanine

116	variants ($R^2 = 0.66$, P<0.001; Supplementary Fig. 1). Discordance in transactivating capacities between the
117	two reporters was observed in only one alanine variant Val75Ala (TG-luc 65.8±12.3%, Tpo-luc
118	127.0±17.2%). For simplicity, descriptions of transactivating capacities below are based on ones measured
119	with TG-luc.
120	Profound LOF was observed in 46 alanine variants (35% of total alanine variants), while moderate LOF
121	was observed in 30 alanine variants (23%) (Fig. 1A and 1B). Eight alanine variants (7%) were considered to
122	be functionally neutral. One alanine variant (Glu67Ala) showed slightly elevated transactivating capacities
123	(139±7.9% activity relative to WT-PAX8).
124	
125	Structure-function relationships of the paired domain of PAX8
126	The paired domain consists of two β -sheets (β 1 and β 2) and six α -helices (α 1 to α 6) (Fig. 1A). Based on the
127	crystal structure data, paired domains can be subdivided to three segments: N-terminal subdomain (β 1, β 2,
128	α 1 to α 3), C-terminal subdomain (α 4 to α 6), and the linker polypeptide between the two subdomains (Fig.
129	1B). As for 66 alanine variants in the N-subdomain, 30 (45%) were profound LOF and 13 (20%) were
130	moderate LOF (Fig. 1C). As for 50 alanine variants in the C-subdomain, nine (18%) were profound LOF and
131	14 (28%) were moderate LOF (Fig. 1D). The effects of alanine substitution in the linker polypeptide were
132	generally modest, except for Gly77, Gly78 and Ser79 that contact with DNA at the bottom of minor groove
133	(Fig. 1E).
134	Based on the crystal structure data, we classified the effects of the alanine substitution into five

135	categories according to the presence or absence of contact(s) to the target DNA or within PAX8 (Table 1).
136	Contacts to the target DNA, which were chiefly via hydrogen bonds, were found in twelve and five residues
137	in N- and C-subdomains, respectively. About 70% of alanine substitutions of these residues caused
138	significant LOF. Intramolecular contacts (hydrogen bonds or van der Waals contacts) were seen in 25 and 29
139	residues in N- and C-subdomains, respectively. About 60% of alanine substitutions of the residues caused
140	significant LOF in both of the two domains. "Free sidechain" residues were observed in 16 and 11 residues
141	in N- and C-subdomains, respectively. Eleven out of 16 "free sidechain" residues in N-subdomain caused,
142	when mutated to alanine, significant LOF, while only three out of 11 did in C-subdomain (P=0.036 by Fisher
143	exact test).
144	
145	
146	Alanine substitution on the residues affected in CH patients

- 147 To date, a total of 16 distinct CH-causing missense *PAX8* mutations affecting 13 residues have been
- described in the paired domain (Al Taji et al. 2007, Carvalho et al. 2013, Congdon et al. 2001, Di Palma et al.
- 149 2010, Grasberger et al. 2005, Hermanns et al. 2013, Lof et al. 2016, Macchia et al. 1998, Meeus et al. 2004,
- 150 Narumi et al. 2012, Narumi et al. 2010, Ramos et al. 2014, Srichomkwun et al. 2016, Vilain et al. 2001). Out
- 151 of the 13 residues, 12 caused significant LOF when substituted to alanine (Table 2). The only exception was
- 152 Gln40Ala (corresponding human mutation, Gln40Pro), which showed minimal LOF (61.0±1.8% activity).

154 Comparison of computational algorithms

155	With assuming <i>in vitro</i> transactivating capacities as a gold standard test, we compared accuracy of seven
156	computational algorithms (FATHMM, MutationAssessor, MutationTaster, PolyPhen-2, PROVEAN, SIFT,
157	and VEST-4) in predicting the pathogenicity of 132 PAX8 alanine variants (Supplementary Table 2). The
158	area under the ROC curve values of the seven algorithms were 0.65±0.09 (mean±SD) (Fig. 2). Highest area
159	under the ROC curve was scored in MutationAssessor with 0.76. When default cut-off threshold was applied,
160	all seven computational algorithms showed high sensitivity (0.95 ± 0.04) and very low specificity (0.14 ± 0.15).
161	When optimal cut-off values based on the ROC curves were used, the sensitivity and specificity were
162	0.62±0.21 and 0.63±0.14, respectively (Supplementary Fig. 2A-G).

Discussion

165	In this study, we conducted the first systematic alanine-scanning mutagenesis targeting the paired domain of
166	a PAX transcription factor. Our findings would provide unique insights into structure-function relationships
167	of the paired domain of PAX8, and possibly other PAX gene family transcription factors, since amino-acid
168	sequences (and three-dimensional structures probably) are well conserved (Supplementary Fig. 3).
169	Three segments (N-subdomain, linker polypeptide and C-subdomain) were recognizable in the paired
170	domain of PAX8. Among 76 alanine variants with significant LOF, 43, 10 and 23 were located in the
171	N-subdomain, linker polypeptide and C-subdomain, respectively. Relatively severe effects of alanine
172	substitutions on the N-subdomain indicate the functional importance of the subdomain. The assumption

agrees well with following three facts: (i) the N-subdomain is better conserved among PAX family genes
than the C-subdomain (Supplementary Fig. 3); (ii) vast majority of CH-causing PAX8 mutations have been
observed in the N-subdomain (Fig. 1A, Supplementary Table 3); (iii) similarly, mutations have been
preferentially observed in the N-subdomain in PAX3 defect (Waardenburg syndrome), PAX6 defect
(Aniridia) and PAX9 defect (Oligodontia or hypodontia), while mutations show broader distribution in PAX2
defect (Renal-coloboma syndrome) (Supplementary Table 3) (Schimmenti 2011). We could recognize two
structural/functional differences between N- and C-subdomains. One is the numbers of contacts between
PAX8 and the target DNA (12 contacts in N-subdomain; 5 contacts in C-subdomain). N-subdomain is
expected to bind to the target DNA more tightly. The other difference is related to "free sidechain" residues.
Among 16 "free sidechain" residues in N-subdomain, 69% caused, when mutated to alanine, significant LOF,
while only 27% in C-subdomain. Relatively severe effects of alanine substitutions on "free sidechain"
residues in N-subdomain imply the yet unknown function(s) of these residues. One possible explanation is
interaction(s) between the PAX8 protein and other transcription factor(s). PAX5, a closely related
transcription factor of PAX8, is known to bind to Ets by its N- subdomain to form a complex. PAX8 might
have such partner molecule(s), although none have been identified so far.
Alanine substitutions of 13 residues that have been affected in human CH patients caused significant
LOF, except for Gln ⁴⁰ . This failure in prediction is probably explained by the nature of substitutions: Gln to
Ala change affects the side chain only, while Gln to Pro change affects both the main chain and side chain.
We suppose that alanine scanning-based data will be a useful resource for pathogenicity prediction of future
novel PAX8 variants, although the nature of amino acid substitution should also be considered.

193	In this study, we showed that widely used computational algorithms have two clear deficits in
194	pathogenicity prediction of PAX8 variants. First, area under the ROC curve values of the algorithms were
195	generally low, indicating insufficient performance of them. Among the seven tested algorithms,
196	MutationAssessor worked best. Second, default cut-off thresholds for prediction were set inappropriately low
197	in all seven algorithms. This would result in false positive results. We stress that caution for "overdiagnosis"
198	is needed when clinicians interpret the results of computational algorithms with default cut-off thresholds.
199	In summary, we report alanine-scanning mutagenesis that targeted all 132 non-alanine residues of the
200	paired domain of PAX8. Our works not only contribute to better understanding of the structure-function
201	relationships of the paired domain, but also provides a unique resource for evaluating the pathogenicity of
202	novel PAX8 variants identified in future CH patients.
203	

204 **Declaration of interest**

The authors declare that there is no conflict of interest that could be perceived as prejudicing the impartiality 205 206 of the research reported.

Funding 207

- This work was supported by JSPS KAKENHI (Grant Number 15K09630) from the Japan Society for the 208 Promotion of Science.
- 209

Acknowledgements 210

211	The authors would like to thank Mariastella Zannini for providing us the <i>Tpo</i> -luc construct. We thank Prof.
212	Hiroyuki Ida of Department of Pediatrics, Jikei University School of Medicine for fruitful discussion. This
213	work was supported by JSPS KAKENHI (Grant Number 15K09630) from the Japan Society for the
214	Promotion of Science.
215	
216	References
217	Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS & Sunyaev SR 2010 A
218	method and server for predicting damaging missense mutations. Nat Methods 7 248-249.
219	(<u>http://doi.org/10.1038/nmeth0410-248</u>)
220	Al Taji E, Biebermann H, Limanova Z, Hnikova O, Zikmund J, Dame C, Gruters A, Lebl J & Krude H 2007 Screening
221	for mutations in transcription factors in a Czech cohort of 170 patients with congenital and early-onset
222	hypothyroidism: identification of a novel PAX8 mutation in dominantly inherited early-onset non-autoimmune
223	hypothyroidism. Eur J Endocrinol 156 521-529. (http://doi.org/10.1530/EJE-06-0709)
224	Carter H, Douville C, Stenson PD, Cooper DN & Karchin R 2013 Identifying Mendelian disease genes with the variant
225	effect scoring tool. BMC Genomics 14 Suppl 3 S3. (<u>http://doi.org/10.1186/1471-2164-14-S3-S3</u>)
226	Carvalho A, Hermanns P, Rodrigues AL, Sousa I, Anselmo J, Bikker H, Cabral R, Pereira-Duarte C, Mota-Vieira L &
227	Pohlenz J 2013 A new PAX8 mutation causing congenital hypothyroidism in three generations of a family is
228	associated with abnormalities in the urogenital tract. Thyroid 23 1074-1078. (<u>http://doi.org/10.1089/thy.2012.0649</u>)
229	Choi Y, Sims GE, Murphy S, Miller JR & Chan AP 2012 Predicting the functional effect of amino acid substitutions and

- 230 indels. *PLoS One* 7 e46688. (<u>http://doi.org/10.1371/journal.pone.0046688</u>)
- 231 Congdon T, Nguyen LQ, Nogueira CR, Habiby RL, Medeiros-Neto G & Kopp P 2001 A novel mutation (Q40P) in
- 232 PAX8 associated with congenital hypothyroidism and thyroid hypoplasia: evidence for phenotypic variability in
- 233 mother and child. J Clin Endocrinol Metab **86** 3962-3967. (<u>http://doi.org/10.1210/jcem.86.8.7765</u>)
- 234 Crompton MR, Bartlett TJ, MacGregor AD, Manfioletti G, Buratti E, Giancotti V & Goodwin GH 1992 Identification
- of a novel vertebrate homeobox gene expressed in haematopoietic cells. *Nucleic Acids Res* 20 5661-5667.
- 236 de Sanctis L, Corrias A, Romagnolo D, Di Palma T, Biava A, Borgarello G, Gianino P, Silvestro L, Zannini M &
- 237 Dianzani I 2004 Familial PAX8 small deletion (c.989_992delACCC) associated with extreme phenotype variability.
- 238 J Clin Endocrinol Metab 89 5669-5674. (http://doi.org/10.1210/jc.2004-0398)
- 239 Di Palma T, Nitsch R, Mascia A, Nitsch L, Di Lauro R & Zannini M 2003 The paired domain-containing factor Pax8
- and the homeodomain-containing factor TTF-1 directly interact and synergistically activate transcription. *J Biol*
- 241 Chem 278 3395-3402. (http://doi.org/10.1074/jbc.M205977200)
- 242 Di Palma T, Zampella E, Filippone MG, Macchia PE, Ris-Stalpers C, de Vroede M & Zannini M 2010 Characterization
- of a novel loss-of-function mutation of PAX8 associated with congenital hypothyroidism. *Clin Endocrinol (Oxf)* 73
- 244 808-814. (<u>http://doi.org/10.1111/j.1365-2265.2010.03851.x</u>)
- 245 Grasberger H, Ringkananont U, Lefrancois P, Abramowicz M, Vassart G & Refetoff S 2005 Thyroid transcription factor
- 246 1 rescues PAX8/p300 synergism impaired by a natural PAX8 paired domain mutation with dominant negative
- 247 activity. Mol Endocrinol 19 1779-1791. (http://doi.org/10.1210/me.2004-0426)
- 248 Guazzi S, Price M, De Felice M, Damante G, Mattei MG & Di Lauro R 1990 Thyroid nuclear factor 1 (TTF-1) contains
- a homeodomain and displays a novel DNA binding specificity. *EMBO J* **9** 3631-3639.

- 250 Hermanns P, Grasberger H, Cohen R, Freiberg C, Dorr HG, Refetoff S & Pohlenz J 2013 Two cases of thyroid
- 251 dysgenesis caused by different novel PAX8 mutations in the DNA-binding region: in vitro studies reveal different
- 252 pathogenic mechanisms. *Thyroid* 23 791-796. (<u>http://doi.org/10.1089/thy.2012.0141</u>)
- 253 Jo W, Ishizu K, Fujieda K & Tajima T 2010 Congenital Hypothyroidism Caused by a PAX8 Gene Mutation Manifested
- as Sodium/Iodide Symporter Gene Defect. J Thyroid Res 2010 619013. (http://doi.org/10.4061/2010/619013)
- 255 Komatsu M, Takahashi T, Takahashi I, Nakamura M, Takahashi I & Takada G 2001 Thyroid dysgenesis caused by
- 256 PAX8 mutation: the hypermutability with CpG dinucleotides at codon 31. *J Pediatr* **139** 597-599.
- 257 (<u>http://doi.org/10.1067/mpd.2001.117071</u>)
- 258 Kumar P, Henikoff S & Ng PC 2009 Predicting the effects of coding non-synonymous variants on protein function
- 259 using the SIFT algorithm. *Nat Protoc* **4** 1073-1081. (<u>http://doi.org/10.1038/nprot.2009.86</u>)
- 260 Lazzaro D, Price M, de Felice M & Di Lauro R 1991 The transcription factor TTF-1 is expressed at the onset of thyroid
- and lung morphogenesis and in restricted regions of the foetal brain. *Development* **113** 1093-1104.
- Liu S, Wang X, Zou H, Ge Y, Wang F, Wang Y, Yan S, Xia H & Xing M 2017 Identification and characterization of
- 263 novel PAX8 mutations in Congenital Hypothyroidism(CH) in a Chinese population. Oncotarget 8 8707-8716.
- 264 (<u>http://doi.org/10.18632/oncotarget.14419</u>)
- 265 Lof C, Patyra K, Kuulasmaa T, Vangipurapu J, Undeutsch H, Jaeschke H, Pajunen T, Kero A, Krude H, Biebermann H,
- 266 *et al.* 2016 Detection of Novel Gene Variants Associated with Congenital Hypothyroidism in a Finnish Patient
- 267 Cohort. *Thyroid* **26** 1215-1224. (<u>http://doi.org/10.1089/thy.2016.0016</u>)
- 268 Macchia PE, Lapi P, Krude H, Pirro MT, Missero C, Chiovato L, Souabni A, Baserga M, Tassi V, Pinchera A, et al.
- 269 1998 PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis. *Nat Genet* **19** 83-86.

270 (<u>http://doi.org/10.1038/ng0598-83</u>)

- 271 Mansouri A, Chowdhury K & Gruss P 1998 Follicular cells of the thyroid gland require Pax8 gene function. Nat Genet
- 272 **19** 87-90. (<u>http://doi.org/10.1038/ng0598-87</u>)
- 273 Meeus L, Gilbert B, Rydlewski C, Parma J, Roussie AL, Abramowicz M, Vilain C, Christophe D, Costagliola S &
- 274 Vassart G 2004 Characterization of a novel loss of function mutation of PAX8 in a familial case of congenital
- 275 hypothyroidism with in-place, normal-sized thyroid. J Clin Endocrinol Metab **89** 4285-4291.

276 (http://doi.org/10.1210/jc.2004-0166)

- 277 Narumi S, Araki S, Hori N, Muroya K, Yamamoto Y, Asakura Y, Adachi M & Hasegawa T 2012 Functional
- 278 characterization of four novel PAX8 mutations causing congenital hypothyroidism: new evidence for
- haploinsufficiency as a disease mechanism. Eur J Endocrinol 167 625-632. (http://doi.org/10.1530/EJE-12-0410)
- 280 Narumi S, Muroya K, Asakura Y, Adachi M & Hasegawa T 2010 Transcription factor mutations and congenital
- 281 hypothyroidism: systematic genetic screening of a population-based cohort of Japanese patients. J Clin Endocrinol
- 282 *Metab* **95** 1981-1985. (<u>http://doi.org/10.1210/jc.2009-2373</u>)
- 283 Narumi S, Yoshida A, Muroya K, Asakura Y, Adachi M, Fukuzawa R, Kameyama K & Hasegawa T 2011 PAX8
- 284 mutation disturbing thyroid follicular growth: a case report. *J Clin Endocrinol Metab* **96** E2039-2044.
- 285 (<u>http://doi.org/10.1210/jc.2011-1114</u>)
- 286 Ohno M, Zannini M, Levy O, Carrasco N & di Lauro R 1999 The paired-domain transcription factor Pax8 binds to the
- 287 upstream enhancer of the rat sodium/iodide symporter gene and participates in both thyroid-specific and
- 288 cyclic-AMP-dependent transcription. *Mol Cell Biol* **19** 2051-2060.
- 289 Plachov D, Chowdhury K, Walther C, Simon D, Guenet JL & Gruss P 1990 Pax8, a murine paired box gene expressed

- in the developing excretory system and thyroid gland. *Development* **110** 643-651.
- 291 Ramos HE, Carre A, Chevrier L, Szinnai G, Tron E, Cerqueira TL, Leger J, Cabrol S, Puel O, Queinnec C, et al. 2014
- 292 Extreme phenotypic variability of thyroid dysgenesis in six new cases of congenital hypothyroidism due to PAX8
- 293 gene loss-of-function mutations. Eur J Endocrinol 171 499-507. (http://doi.org/10.1530/EJE-13-1006)
- 294 Reva B, Antipin Y & Sander C 2011 Predicting the functional impact of protein mutations: application to cancer
- 295 genomics. Nucleic Acids Res 39 e118. (http://doi.org/10.1093/nar/gkr407)
- 296 Schimmenti LA 2011 Renal coloboma syndrome. Eur J Hum Genet 19 1207-1212.
- 297 (<u>http://doi.org/10.1038/ejhg.2011.102</u>)
- 298 Schwarz JM, Rodelsperger C, Schuelke M & Seelow D 2010 MutationTaster evaluates disease-causing potential of
- sequence alterations. *Nat Methods* 7 575-576. (<u>http://doi.org/10.1038/nmeth0810-575</u>)
- 300 Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ, Day IN & Gaunt TR 2013 Predicting the
- 301 functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. *Hum*
- 302 *Mutat* **34** 57-65. (<u>http://doi.org/10.1002/humu.22225</u>)
- 303 Srichomkwun P, Admoni O, Refetoff S & de Vries L 2016 A Novel Mutation (S54C) of the PAX8 Gene in a Family
- 304 with Congenital Hypothyroidism and a High Proportion of Affected Individuals. *Horm Res Paediatr* **86** 137-142.
- 305 (<u>http://doi.org/10.1159/000445891</u>)
- 306 Thomas PQ, Brown A & Beddington RS 1998 Hex: a homeobox gene revealing peri-implantation asymmetry in the
- 307 mouse embryo and an early transient marker of endothelial cell precursors. *Development* **125** 85-94.
- 308 Thusberg J, Olatubosun A & Vihinen M 2011 Performance of mutation pathogenicity prediction methods on missense
- 309 variants. *Hum Mutat* **32** 358-368. (<u>http://doi.org/10.1002/humu.21445</u>)

- 311 Chiovato L, et al. 2007 Genetic analysis of the PAX8 gene in children with congenital hypothyroidism and
- 312 dysgenetic or eutopic thyroid glands: identification of a novel sequence variant. *Clin Endocrinol (Oxf)* **67** 34-40.
- 313 (<u>http://doi.org/10.1111/j.1365-2265.2007.02831.x</u>)
- 314 Vilain C, Rydlewski C, Duprez L, Heinrichs C, Abramowicz M, Malvaux P, Renneboog B, Parma J, Costagliola S &
- 315 Vassart G 2001 Autosomal dominant transmission of congenital thyroid hypoplasia due to loss-of-function mutation
- 316 of PAX8. J Clin Endocrinol Metab 86 234-238. (http://doi.org/10.1210/jcem.86.1.7140)
- 317 Zannini M, Avantaggiato V, Biffali E, Arnone MI, Sato K, Pischetola M, Taylor BA, Phillips SJ, Simeone A & Di Lauro
- 318 R 1997 TTF-2, a new forkhead protein, shows a temporal expression in the developing thyroid which is consistent
- 319 with a role in controlling the onset of differentiation. *EMBO J* 16 3185-3197.
- 320 (<u>http://doi.org/10.1093/emboj/16.11.3185</u>)
- 321 Zannini M, Francis-Lang H, Plachov D & Di Lauro R 1992 Pax-8, a paired domain-containing protein, binds to a
- 322 sequence overlapping the recognition site of a homeodomain and activates transcription from two thyroid-specific
- 323 promoters. *Mol Cell Biol* **12** 4230-4241.
- 324 Zou H, Chai J, Liu S, Zang H, Yu X, Tian L, Li H & Han B 2015 A De novo PAX8 mutation in a Chinese child with
- 325 congenital thyroid dysgenesis. *Int J Clin Exp Pathol* **8** 11434-11439.

328 Figure 1

329	Effects of alanine substitutions in paired domain of PAX8. (A) A schematic diagram showing the secondary
330	structure of the paired domain (Gly ⁹ to Gln ¹³⁷) of PAX8. Residues that caused profound loss of function
331	(LOF), moderate LOF and minimal LOF were colored in red, orange and yellow, respectively. Residues with
332	comparable activities with wildtype and high activity were colored in gray and blue, respectively. Two
333	β -sheets and six α -helices are showed as boxes. Bars indicate the locations of previously reported missense
334	PAX8 mutations. (B-E) The three-dimensional structure of the DNA-binding paired domain and its target
335	DNA (colored in silver), based on the crystal structure data of PAX5–DNA complex. An overall view
336	indicating the three subdomains (B): N-subdomain (C), C-subdomain (D), and the linker polypeptide (E).
337	
338	Figure 2
339	ROC curves of seven computational algorithms (FATHMM, MutationAssessor, MutationTaster, PolyPhen-2,
340	PROVEAN, SIFT, and VEST-4) are shown. For each of 132 PAX8 alanine variants, scores were obtained
341	with the seven algorithms. With assuming in vitro transactivating capacities as a gold standard test, ROC
342	curves were drawn.
343	

345 **Table 1**

		N-subdoma	in	C-subdomain			
	Total	LOF ^a	%LOF	Total	LOF ^a	%LOF	nh
Classification of the effect	(N)	(N)	(%)	(N)	(N)	(%)	P
Loss of hydrogen bond(s) to DNA	12	10	83	4	3	75	0.47
Loss of van der Waals contact(s) to DNA	0	0	0	1	0	0	NA
Loss of hydrogen bond(s) within PAX8	6	3	50	11	6	55	0.38
oss of van der Waals contact (within PAX8)	19	14	74	18	11	61	0.20
No effect ("free sidechain")	16	11	69	11	3	27	0.036

346 Structure-function relationships of the N-subdomain and C-subdomain

347 a Significant LOF *(i.e.,* relative activity <30% of wildtype)

348 b P values were calculated with Fisher exact test.

349 Abbreviations: LOF loss of function

351 Table 2

TT (/·	Al • T 7 • 4	<i>TG</i> -luc activity of Ala variant (%)		
Human mutation	Alanine Variant			
Leu16Pro	Leu16Ala	5.8±1.5		
Phe20Ser	Phe20Ala	-0.4±2.0		
Pro25Arg	Pro25Ala	21.2±2.6		
Arg31His	Arg31Ala	-0.9±0.4		
Arg31Cys	Arg31Ala	-0.9±0.4		
Gln40Pro	Gln40Ala	61.0±1.8		
Ile47Thr	Ile47Ala	-1.9±0.9		
Ser48Phe	Ser48Ala	22.7±4.2		
Arg52Pro	Arg52Ala	0.9±4.9		
Ser54Arg	Ser54Ala	-0.6±0.9		
Ser54Gly	Ser54Ala	-0.6±0.9		
Ser54Cys	Ser54Ala	-0.6±0.9		
His55Gln	His55Ala	9.2±1.8		
Cys57Tyr	Cys57Ala	16.1±6.7		
Leu62Arg	Leu62Arg	-1.4±0.9		
Arg133Gln	Arg133Ala	11.9±4.1		

352 Effects of alanine substitutions on 13 residues that have been affected in human CH patients

353

356 Fig. 1

358 Fig. 2