IAI Accepted Manuscript Posted Online 22 January 2019 Infect. Immun. doi:10.1128/IAI.00894-18 Copyright © 2019 American Society for Microbiology. All Rights Reserved.

1	Redundant and Distinct Roles of Secreted Protein Eap and Cell Wall-Anchored
2	Protein SasG in Biofilm Formation and Pathogenicity of Staphylococcus aureus
3	
4	Running Title: Roles of Eap and SasG in Biofilm and Pathogenesis
5	
6	Keigo Yonemoto, ^{a,b,c} Akio Chiba, ^{a,b} Shinya Sugimoto, ^{a,b,#} Chikara Sato, ^d Mitsuru Saito, ^c
7	Yuki Kinjo, ^{a,b} Keishi Marumo, ^{b,c} and Yoshimitsu Mizunoe ^{a,b}
8	^a Department of Bacteriology, The Jikei University School of Medicine, Tokyo, Japan
9	^b Jikei Center for Biofilm Science and Technology, The Jikei University School of Medicine,
10	Tokyo, Japan
11	^c Department of Orthopaedic Surgery, The Jikei University School of Medicine, Tokyo,
12	Japan
13	^d Biomedical Research Institute, National Institute of Advanced Industrial Science and
14	Technology (AIST), Ibaraki, Japan
15	
16	[#] Address correspondence to Shinya Sugimoto, ssugimoto@jikei.ac.jp.

Downloaded from http://iai.asm.org/ on January 23, 2019 by guest

17 K.Y. and A.C. contributed equally to this work.

18 ABSTRACT

19	Chronic and fatal infections caused by Staphylococcus aureus are sometimes associated
20	with biofilm formation. Secreted proteins and cell wall-anchored proteins (CWAPs) are
21	important for the development of polysaccharide-independent biofilms, but functional
22	relationships between these proteins are unclear. In the current study, we report the roles
23	of the extracellular adherence protein Eap and surface CWAP SasG in S. aureus MR23,
24	a clinical methicillin-resistant isolate that forms a robust protein-dependent biofilm and
25	accumulates a large amount of Eap in the extracellular matrix. Double-deletion of eap
26	and sasG, but not single eap or sasG deletion, reduced biomass of the formed biofilm.
27	Mutational analysis demonstrated that cell wall-anchorage is essential for the role of
28	SasG in biofilm formation. Confocal laser scanning microscopy revealed that MR23
29	formed a rugged and thick biofilm; deletion of both, <i>eap</i> and <i>sasG</i> , reduced biofilm
30	ruggedness and thickness. Although sasG deletion did not affect either of these features,
31	eap deletion reduced the ruggedness but not thickness of the biofilm. This indicated that
32	Eap contributes to the rough irregular surface structure of the MR23 biofilm, and that both
33	Eap and SasG play a role in biofilm thickness. The pathogenicity of $\triangle eap \Delta sasG$ strain in
34	a silkworm larval infection model was significantly lower ($P < 0.05$) than that of the
35	wild-type and single-deletion mutants. Collectively, these findings highlight the redundant

- 36 and distinct roles of a secreted protein and a CWAP in biofilm formation and
- 37 pathogenicity of S. aureus and may inform new strategies to control staphylococcal
- 38 biofilm infections.

39 INTRODUCTION

40	Biofilms are recognized as the dominant form of life of microbes on Earth (1, 2).
41	Pathogenic and commensal bacteria that form biofilms in the human body or artificial
42	implants can cause chronic infections (3, 4). Since bacteria embedded within biofilms
43	acquire tolerance to host immunity and antibacterial drugs (5), biofilm-associated
44	infections are difficult to treat, can be life-threatening, and increase treatment costs in the
45	clinical setting (6). To combat biofilm-associated issues, understanding the molecular
46	mechanisms of biofilm formation and development of strategies to control biofilm
47	formation based on the gained mechanistic insights are pivotal.
48	Staphylococcus aureus is a commensal bacterium carried by approximately 30%
49	of healthy population (7, 8). It is an opportunistic pathogen that causes various infectious
50	diseases, from superficial skin infections to invasive infections (9, 10). S. aureus can also
51	cause chronic infections associated with biofilms (11). Within biofilms, bacterial cells are
52	embedded in an extracellular matrix (ECM) comprised of DNA, polysaccharides, and/or
53	proteins (12), but the amount of each component differs depending on the strain and
54	culture conditions (13). Extracellular DNA (eDNA) is important for the primary attachment
55	of cells to the substratum, and contributes to the maintenance of biofilm structure in both
56	gram-negative bacteria and gram-positive bacteria, including S. aureus (14–16). Specific

	~	
		-
	_	
	-	
	-	
	_	
	_	
	_	
	<u> </u>	
_		
F		
	~	
	0	
	σ	
	p	
-	2	
	pana	
	gno	
	and	
	and	
	and	
-	n and	
	on and	
	on and	
	on and	
	ion and	
	tion and	
•	ction and	
:	ction and	

μ

57	polysaccharides, i.e., polysaccharide intercellular adhesin (PIA) or
58	poly- <i>N</i> -acetylglucosamine, play an important role in <i>S. aureus</i> biofilms (17–19). On the
59	other hand, certain strains produce PIA-independent and protein-dependent biofilms (20),
60	mainly relying on either secreted proteins or cell wall-anchored proteins (CWAPs) (12).
61	Extracellular adherence protein (Eap), also known as MHC class II analog
62	protein (Map), is an S. aureus-specific secreted protein (21). Eap contributes to the
63	virulence of S. aureus by facilitating interactions between the bacterial cell surface and
64	several plasma proteins, thus promoting adherence to the host endothelium and
65	internalization into human fibroblasts and epithelial cells (22, 23). Eap plays an important
66	role in biofilm formation under certain growth conditions (24, 25). Disruption of the eap
67	gene in S. aureus Newman leads to a slight reduction of biofilm formation under low-iron
68	conditions (24). Further, deletion of <i>eap</i> remarkably reduces biofilm formation by S.
69	aureus SA113 (ATCC 35556) derived from the laboratory strain NCTC8325, under
70	iron-replete conditions in the presence of human serum (25).
71	CWAPs are classified into four distinct groups (26). The first group belongs to the
72	microbial surface component-recognizing adhesive matrix molecules and includes
73	clumping factors (ClfA and ClfB) and fibronectin binding proteins (FnBPA and FnBPB).
74	Proteins from the second group harbor the near-iron transporter motif and include

75

Downloaded from http://iai.asm.org/ on January 23, 2019 by guest

76	proteins contain tandemly repeated three helical bundles, e.g., protein A. The fourth
77	group comprises the G5-E repeat family proteins, including S. aureus surface protein G
78	(SasG). All CWAPs contain a characteristic five-amino acid structure called the LPXTG
79	motif (Leu-Pro-any amino acid-Thr-Gly) (27). The LPXTG motif is recognized by the
80	membrane protein sortase A (SrtA) (27), which cleaves the peptide bond between
81	threonine and glycine residues and covalently bridges the threonine to lipid II, a precursor
82	of peptidoglycan (28). Although extensive efforts have been made to demonstrate the
83	individual importance of these proteins in biofilm formation and pathogenesis, functional
84	relationships among them are still largely unknown.
85	SasG, also known as Aap in Staphylococcus epidermidis, is one of the
86	extensively characterized CWAPs in S. aureus and promotes cell-cell interactions during
87	biofilm formation (29, 30). SasG/Aap is comprised of the N-terminal secretion signal, the
88	A domain, and the repeated B domains harboring two short G5-E repeats, followed by the
89	C-terminal wall/membrane-spanning regions containing the LPXTG motif (31). Biofilm
90	promotion is mainly achieved by interactions between B domains of two SasG/Aap
91	molecules in a Zn ²⁺ -dependent fashion (32). Atomic force microscopy demonstrated that
92	homophilic interactions between B domains of two SasG/Aap molecules are involved in

iron-regulated surface determinant proteins (IsdA, IsdB, and IsdH). The third group

 $\overline{\mathbb{A}}$

 \mathbb{A}

93	biofilm promotion activity (33). On the other hand, it is still unclear whether cell
94	wall-anchorage is essential for the SasG/Aap function in biofilm promotion.
95	In the current study, we aimed to define the roles of Eap and SasG in biofilm
96	formation. We show that the secreted protein Eap and CWAP SasG compensate for one
97	another in biofilm formation, but only Eap plays a key role in the ruggedness of biofilm
98	structure. In addition, loss of both proteins significantly reduces the pathogenicity of S.
99	aureus in a silkworm larval infection model. These findings provide insight into the
100	multicellular behaviors and pathogenicity of S. aureus and emphasize the importance of
101	developing anti-biofilm therapies that target multiple biofilm components.

102 **RESULTS**

103	Eap and CWAPs play similar roles in biofilm biomass determination. In the
104	current study, S. aureus strains were cultured at 37°C in brain heart infusion (BHI)
105	medium supplemented with 1% (w/v) glucose (BHIG medium), since a large variety of S.
106	aureus strains produce substantial biofilms under these conditions (34). We previously
107	showed that MR23, a clinical methicillin-resistant isolate of S. aureus, forms a robust
108	protein-dependent biofilm in BHIG that is dispersed by proteinase K (Fig. S1) (35). To
109	identify proteins that are important for biofilm formation, known biofilm-associated genes
110	were deleted in MR23 by using the in-frame deletion method (36, 37). Although MR23
111	ECM contains large amounts of Eap and Eap promotes biofilm formation in strains that
112	do not produce substantial biofilms (35), deletion of <i>eap</i> did not affect the biomass of
113	MR23 biofilm (Fig. 1A), similarly to <i>S. aureus</i> SA113 $\triangle eap$ grown in BHIG (25). This
114	suggested that Eap does not contribute to biofilm formation in MR23 and/or that other
115	molecules, including proteins, eDNA, and PIA, compensate for the loss of Eap function.
116	To address the latter possibility, we treated a preformed MR23 Δeap biofilm with enzymes
117	that degrade major biofilm components. The biofilm was destroyed by proteinase K, but
118	not by DNase I or PIA-degrading dispersin B (Fig. S1A). This indicated that MR23 Δeap
119	formed a protein-dependent biofilm and that other proteins contributed to biofilm

 \mathbb{A}

M

Infection and Immunity

120 formation.

121	CWAPs are important for biofilm formation in various bacteria (38–42). We
122	therefore asked whether CWAPs play a role in biofilm formation in MR23 Δeap . Sortase A
123	covalently links the CWAP LPXTG motif to peptidoglycan, anchoring CWAPs to the cell
124	wall (27). Therefore, the role of cell wall-anchored CWAPs can be investigated by
125	deleting srtA. To test whether Eap played a role in biofilm formation, srtA was disrupted in
126	MR23 wild-type and MR23 $\triangle eap$. Although the biofilm biomass of the $\triangle srtA$ mutant was
127	the same as that of the wild type, strain $\Delta eap \Delta srtA$ formed significantly less biofilm than
128	other strains (Fig. 1A). In addition, the biomass of $\triangle eap \Delta srtA$ strain biofilm was restored
129	by expressing either Eap or SrtA from the respective plasmids (Fig. 1B). Expression of
130	Eap and SrtA was confirmed by sodium dodecyl sulfate-polyacrylamide gel
131	electrophoresis (SDS-PAGE) of ECM (Fig. 1C) and cell wall fractions (Fig. 1D).
132	Drastically reduced levels of CWAPs in $\triangle eap \Delta srtA$ mutant were recovered by the
133	expression of exogenous SrtA (Fig. 1D). These observations indicated that Eap and
134	certain cell wall-anchored CWAP(s) play redundant roles in the formation of the
135	substantial protein-dependent biofilm of MR23.
136	Eap and SasG play redundant roles in biofilm formation. To identify the
137	CWAP that compensated for the loss of Eap in biofilm formation by MR23, we disrupted

138

139

140

141

142

143

144

145

146

147

148

149

(Fig. 2A). In addition, the biomass of $\triangle sasG$ mutant biofilm was similar to those of
wild-type and $\triangle eap$ strains (Fig. 2A). The reduced biomass of $\triangle eap \triangle sasG$ strain biofilm
was restored by the expression of either Eap or SasG from the respective plasmids (Fig.
2B). Expression of Eap and SasG was confirmed by SDS-PAGE (Fig. 2C) and western
blotting (Fig. 2D). Of note, the amount of SasG produced by a plasmid-encoded gene
was higher than that of wild-type strain harboring the empty vector pLC1 (Fig. 2D), which
may account for a slight increase in biomass of biofilm formed by $\Delta eap \Delta sasG$ mutant
harboring $pSasG^{WT}$ (Fig. 2B). These observations revealed that Eap and SasG play
redundant roles in the formation of substantial biofilm by MR23.
MD00 is a low of Factor of the static second of the state

150	MR23 is a hyper Eap-producing strain compared with other clinical isolates as
151	recently reported (34). In addition, the protein level of SasG in MR23 was similar or
152	higher than those in most other strains (Fig. S2). Therefore, the redundant roles of Eap
153	and SasG might be specific for certain strains that overproduce Eap and SasG. As shown
154	in Fig. S3A, single knockouts of <i>eap</i> and <i>sasG</i> slightly reduced the biofilm biomass in
155	RN4220, a restriction-deficient strain of S. aureus derived from the laboratory strain

major CWAP-encoding genes belonging to different groups (26) in MR23 wild type and

 Δeap mutant. Simultaneous deletion of eap and sasG resulted in a significant reduction

of the biofilm biomass, while combined deletions of eap and other CWAP genes did not

156	NCTC8325 (43), while double knockout of both genes did so more effectively.
157	Overproduction of either Eap or SasG drastically stimulated biofilm formation of RN4220
158	$\Delta eap \Delta sasG$. The biofilm biomass of RN4220 $\Delta eap \Delta sasG$ co-overexpressing Eap and
159	SasG was similar to those of cells overexpressing each protein (Fig. S3B). Under the
160	conditions tested, the amount of Eap expressed from pEap-SasG was lower than that
161	from pEap, while the amount of SasG produced from pEap-SasG was almost the same
162	as that from pSasG (Fig. S3C). Supplementation of high concentrations of
163	anhydrotetracycline (aTc), an inducer, did not stimulate biofilm formation of RN4220 $\triangle eap$
164	$\Delta sasG$ pEap-SasG (data not shown). Therefore, we added purified Eap into the biofilm
165	culture of RN4220 $\triangle eap \Delta sasG$ pEap-SasG. Exogenously added Eap did not promote
166	biofilm formation of RN4220 $\triangle eap \Delta sasG$ pEap-SasG, although it stimulated that of
167	RN4220 $\triangle eap \Delta sasG$ pLC1 in a dose-dependent manner (Fig. S3D). Analysis of
168	extracellular matrix confirmed that a sufficient amount of Eap was used in this experiment,
169	since Eap in the culture of RN4220 $\triangle eap \Delta sasG$ pEap was estimated to be 90.9 ± 2.9 nM
170	(n = 3). These results indicate that redundancy between Eap and SasG is likely specific
171	for certain strains that overproduce Eap and SasG as in the case of MR23.
172	SasG is a DNA-binding protein and capable of stabilizing eDNA in the
173	biofilm. The biofilms formed by wild type and $\triangle eap$ were resistant to DNase I-treatment,

Downloaded from http://iai.asm.org/ on January 23, 2019 by guest

174

175

176

177

178

179

180

181

182

183

184

blocking neutrophil extracellular trap (NETs) formation (44). However, DNA-binding
capacity of SasG has not yet been elucidated. Therefore, we performed gel shift assay t
examine the interaction between SasG and DNA. As shown in Figure 3B, purified SasG
bound to purified lambda DNA in a dose-dependent manner. Next, we examined effect of
SasG on the stability of DNA. Although lambda DNA was digested by DNase I rapidly,
SasG protected it from degradation under the tested conditions (Fig. 3C). Taken togethe
these results indicate that SasG is a DNA-binding protein and capable of stabilizing
eDNA in the biofilm.

185	eDNA in the biofilm.
186	Cell wall-anchorage of SasG is essential for biofilm formation. SasG
187	contains an N-terminal signal peptide, A domain, repeated B domains, and LPXTG motif
188	(28). DNA sequencing revealed that the MR23 sasG gene encodes a protein of
189	approximately 108 kDa, containing four B domains (Figs. 4A and S4). SasG promotes
190	adhesion of bacterial cells during biofilm formation, and while interactions between the B
191	domains are important for adhesion, the A domain is dispensable (31). However, it was

whereas those by $\triangle sasG$ and $\triangle eap \triangle sasG$ were sensitive slightly and remarkably,

respectively (Figs. 3A and S1), suggesting two possibilities that Eap and SasG interact

with and protect eDNA from nucleases and that the importance of eDNA is masked by

these proteins. Recently, it has been reported that Eap can bind to DNA and is capable of

192	unclear whether cell wall-anchorage was essential for SasG function in biofilm
193	development. To address this, we removed the SasG LPXTG motif and tested whether
194	that affected biofilm formation by MR23. Plasmid-encoded wild-type SasG (SasG $^{\text{WT}}$)
195	restored the biofilm biomass of $\Delta eap \Delta sasG$ strain to wild-type levels, whereas
196	expression of the protein lacking the LPXTG motif (SasG ^{ΔL}) did not (Fig. 4B). As
197	expected, SasG ^{WT} was present in the cell wall fraction but SasG ^{ΔL} was not (Fig. 4C). By
198	contrast, large amount of SasG ^{ΔL} was detected in the culture supernatant (Fig. 4D).
199	These observations indicated that cell wall-anchorage is essential for the key role of
200	SasG in biofilm formation. This was consistent with the reduced biofilm biomass of Δeap
201	$\Delta srtA$ strain (Fig. 1A), in which SasG was not tethered to the cell wall.
201 202	Δ <i>srtA</i> strain (Fig. 1A), in which SasG was not tethered to the cell wall. Eap plays an important role in rugged biofilm formation. Eap is a major
201 202 203	<i>∆srtA</i> strain (Fig. 1A), in which SasG was not tethered to the cell wall. Eap plays an important role in rugged biofilm formation. Eap is a major component of MR23 ECM. Eap contributes to biofilm formation by promoting bacterial
201202203204	∆ <i>srtA</i> strain (Fig. 1A), in which SasG was not tethered to the cell wall. Eap plays an important role in rugged biofilm formation. Eap is a major component of MR23 ECM. Eap contributes to biofilm formation by promoting bacterial cohesion and bacterial cell-surface interactions (30, 38), whereas SasG promotes
 201 202 203 204 205 	 ∆<i>srtA</i> strain (Fig. 1A), in which SasG was not tethered to the cell wall. Eap plays an important role in rugged biofilm formation. Eap is a major component of MR23 ECM. Eap contributes to biofilm formation by promoting bacterial cohesion and bacterial cell-surface interactions (30, 38), whereas SasG promotes bacterial cell-cell adhesion (31). To determine whether these proteins affected the
 201 202 203 204 205 206 	Δ <i>srtA</i> strain (Fig. 1A), in which SasG was not tethered to the cell wall. Eap plays an important role in rugged biofilm formation. Eap is a major component of MR23 ECM. Eap contributes to biofilm formation by promoting bacterial cohesion and bacterial cell-surface interactions (30, 38), whereas SasG promotes bacterial cell-cell adhesion (31). To determine whether these proteins affected the three-dimensional structure of MR23 biofilm, we analyzed biofilms formed by MR23
 201 202 203 204 205 206 207 	Δ <i>srtA</i> strain (Fig. 1A), in which SasG was not tethered to the cell wall. Eap plays an important role in rugged biofilm formation. Eap is a major component of MR23 ECM. Eap contributes to biofilm formation by promoting bacterial cohesion and bacterial cell-surface interactions (30, 38), whereas SasG promotes bacterial cell-cell adhesion (31). To determine whether these proteins affected the three-dimensional structure of MR23 biofilm, we analyzed biofilms formed by MR23 wild-type and derived mutant strains by using confocal laser scanning microscopy
 201 202 203 204 205 206 207 208 	Δ <i>srtA</i> strain (Fig. 1A), in which SasG was not tethered to the cell wall. Eap plays an important role in rugged biofilm formation. Eap is a major component of MR23 ECM. Eap contributes to biofilm formation by promoting bacterial cohesion and bacterial cell-surface interactions (30, 38), whereas SasG promotes bacterial cell-cell adhesion (31). To determine whether these proteins affected the three-dimensional structure of MR23 biofilm, we analyzed biofilms formed by MR23 wild-type and derived mutant strains by using confocal laser scanning microscopy (CLSM). Wild-type strain formed a thick biofilm with a highly rugged surface (Fig. 5).
 201 202 203 204 205 206 207 208 209 	Δ <i>srtA</i> strain (Fig. 1A), in which SasG was not tethered to the cell wall. Eap plays an important role in rugged biofilm formation. Eap is a major component of MR23 ECM. Eap contributes to biofilm formation by promoting bacterial cohesion and bacterial cell-surface interactions (30, 38), whereas SasG promotes bacterial cell-cell adhesion (31). To determine whether these proteins affected the three-dimensional structure of MR23 biofilm, we analyzed biofilms formed by MR23 wild-type and derived mutant strains by using confocal laser scanning microscopy (CLSM). Wild-type strain formed a thick biofilm with a highly rugged surface (Fig. 5). Strain Δ sasG formed a biofilm whose thickness and ruggedness were similar to those of

Downloaded from http://iai.asm.org/ on January 23, 2019 by guest

210	the wild-type biofilm. Strain $\triangle eap$ formed a biofilm with a similar thickness but smoother
211	than those of wild-type and $\Delta sasG$ strain biofilms. On the other hand, strain $\Delta eap \Delta sasG$
212	formed a thin and smooth biofilm. These observations indicated that Eap and SasG play
213	similar roles in determining biofilm biomass and thickness, but different roles in
214	determining biofilm ruggedness.

215	We then analyzed biofilms at an initial phase of formation (4-h biofilms) by using
216	atmospheric scanning electron microscopy (ASEM). This enabled the visualization of
217	biofilms in solution at a higher resolution than that afforded by CLSM, and with minimal
218	artifacts caused by dehydration (45). MR23 wild-type biofilm contained highly aggregated
219	cell clusters (Fig. S4). By contrast, biofilm formed by strain $\triangle eap \Delta sasG$ spread on the
220	surface of ASEM dish, and the formed cell clusters were smaller and less numerous than
221	those of wild-type strain. In addition, both focused and defocused cells were observed in
222	wild-type strain, while focused cells were predominant in strain $\Delta eap \Delta sasG$. This
223	indicated that the former formed a multilayer biofilm while the latter formed a monolayer
224	biofilm after 4-h cultivation. These differences might be associated with the
225	three-dimensional structures of the biofilms observed using CLSM (Fig. 5).
226	Double deletion of eap and sasG reduces pathogenicity of S. aureus. We
227	next examined the impact of eap and sasG deletion on the pathogenicity of S. aureus in

Downloaded from http://iai.asm.org/ on January 23, 2019 by guest

228	vivo, using the silkworm larvae (Bombyx mori) as a model of human pathogenic bacterial
229	infection (46). All silkworm larvae survived for at least 60 h after injection of 0.6% NaCl
230	solution, but 70% of larvae died within that period after injection of 1×10^7 cells of MR23
231	wild type (Fig. 6). No statistically significant difference in the survival rate of silkworm
232	larvae infected with Δeap strain and wild type were apparent. Similarly, no statistically
233	significant differences were observed in the mortality of larvae infected with $\Delta sasG$ and
234	wild-type strains. By contrast, the survival rate of silkworm larvae infected with Δeap
235	$\Delta sasG$ strain was significantly higher than that of larvae infected with the wild type (Fig.
236	6). Since proliferation of <i>S. aureus</i> in silkworm larvae is required for the lethality of
237	infection (46), we also evaluated the survival of the tested strains in silkworm larvae. After
238	24-h infection, no significant differences in the retrieved CFU/ml were apparent between
239	the strains (Fig. S5). Since the mortality of larvae infected with $\triangle eap \Delta sasG$ was
240	significantly lower than that of larvae infected with the wild type, this indicated that the
241	effect was not associated with a reduction of bacterial cell numbers in silkworm larvae,
242	but rather, with the strain's biofilm forming capacity in vitro.
243	

244 **DISCUSSION**

245

In the current study, genetic and microscopic analyses, and silkworm infection

 $\overline{\triangleleft}$

Infection and Immunity

experiments revealed that the secreted protein Eap and CWAP SasG play redundant and
distinct roles in biofilm development and pathogenicity of *S. aureus*. To the best of our
knowledge, this is the first-ever report describing the functional relationship between a
secreted protein and a bona fide cell wall-anchored CWAP in the multicellular behavior
and pathogenesis of an opportunistic pathogen.

251Mutational analyses revealed that simultaneous disruption of eap and srtA, and that of eap and sasG resulted in a significant reduction of the biomass of MR23 biofilm 252253(Figs. 1 and 2). However, the biomass of $\triangle eap \triangle srtA$ strain biofilm was lower than that of 254 $\Delta eap \Delta sasG$ strain biofilm (Figs. 1 and 2), indicating that additional CWAP(s) might be 255responsible for biofilm formation by the $\triangle eap \Delta sasG$ strain. In addition, strain $\triangle eap \Delta srtA$ 256formed a low but significant amount of biofilm (approximately 25% of that produced by 257the wild type) that was sensitive to proteinase K and DNase I, but not dispersin B (Fig. 258S1), suggesting that other non-CWAP proteins and eDNA contribute slightly to biofilm 259formation. 260

Downloaded from http://iai.asm.org/ on January 23, 2019 by guest

SasG promotes cell-cell interactions during biofilm formation. This is mainly achieved by interactions between B domains of two SasG molecules anchored to different *S. aureus* cells, in a Zn^{2+} -dependent fashion (32). Although at least five B domains were shown to be indispensable for SasG to promote biofilm formation, the

264	number of B domain varies between 2 and 10 (29). In the current study, we confirmed
265	that MR23 SasG harbors four B domains (Accession number: LC388387) and yet it
266	contributes to biofilm formation of MR23 (Fig. 1). The slight contradiction between the
267	previous study and our study regarding the number of B repeats required for biofilm
268	formation could be due to the different strains and experimental conditions. Eap harbors
269	four to six tandem repeats of a characteristic domain, the EAP domain, comprised of an
270	alpha-helix positioned diagonally across a five-stranded, mixed beta-sheet (47). DNA
271	sequencing revealed that MR23 Eap has five EAP domains (Accession number:
272	LC388386). Revisiting the minimum number of B domains in SasG and determining the
273	role of EAP domain in biofilm formation will provide further insights into molecular
274	mechanisms of biofilm formation mediated by these proteins.
275	Previously, the involvement of a secreted protein Sbp and a cell wall-anchored
276	protein Aap in biofilm formation was analyzed in <i>S. epidermidis</i> (48). The authors
277	reported that Sbp, but not Aap, is involved in biofilm formation of S. epidermidis strain
278	1457, a PIA-dependent biofilm producer. They noticed that reduced biofilm formation in
279	Δsbp was due to the down regulation of <i>icaA</i> transcription. Subsequently, the authors
280	revisited the roles of Sbp and Aap in an <i>ica</i> -negative mutant of strain 1457.
281	Overproduction of the B domains of Aap and supplementation of recombinant Sbp

 \mathbb{A}

282

283

284	596-1507) that was not covalently linked to the cell wall and did not show the importance
285	of cell wall-anchored Aap. Interestingly, we found that cell wall-anchorage was essential
286	for SasG function in MR23 biofilm and that the role of SasG was reinforced in the
287	absence of Eap (Fig. 4). On the other hand, S. aureus protein A and Listeria
288	monocytogenes internalin A do not require cell wall-anchoring to promote biofilm
289	development (39, 49). The requirement of cell wall-anchorage for biofilm promotion
290	depends on the CWAP. Protein A and internalin A may bind to cell surface even in the
291	absence of the LPXTG motif and are expected to promote bacterial cell-cell interactions
292	via protein-protein or protein-other component(s) interactions. Data presented herein
293	indicated that $SasG^{\Delta L}$ was present in the culture supernatant but no or very little protein
294	was present in the cell surface fraction (Fig. 4). This suggested that SasG was unable to
295	associate tightly with the bacterial cell surface in the absence of the LPXTG motif.
296	Reduced biofilm formation by strain $\triangle eap \Delta srtA$ (Fig. 1) supported this notion, since
297	LPTXG-containing proteins cannot be covalently bridged to the cell wall in that strain.
298	CLSM analysis revealed that $\triangle eap$ and $\triangle sasG$ strains produced a thick biofilm,
299	similar to the wild type, and that strain $\triangle eap \Delta sasG$ formed a thinner biofilm than the wild

promoted biofilm formation of the ica-negative strain in a dose-dependent manner. It

should be emphasized that the authors used only the B domain of Aap (amino acids

 $\overline{\triangleleft}$

18

300

Downloaded from http://iai.asm.org/ on January 23, 2019 by guest

301	violet staining (Fig. 2A). Interestingly, deletion of eap significantly reduced the
302	ruggedness of the MR23 biofilm, whereas that of <i>sasG</i> did not (Fig. 5), indicating that
303	Eap contributes to the ruggedness of the biofilm. ASEM analysis indicated that Eap is
304	important for bacterial cohesion, leading to the formation of highly aggregated cell
305	clusters at the initial stage of biofilm formation (Fig. S4). This property of Eap appeared to
306	be associated with the roughness of biofilm.
307	We also examined the impact of <i>eap</i> and <i>sasG</i> deletions on <i>S. aureus</i>
308	pathogenicity in vivo, using the silkworm larva model. No statistically significant
309	differences between the survival rates of silkworm larvae infected with wild-type and
310	Δeap strains were apparent; however, the survival rate of silkworm larvae infected with
311	Δeap strain was slightly higher than that of larvae infected with wild-type and $\Delta sasG$
312	strains (Fig. 6). Eap contributes to the virulence of S. aureus by interacting with bacterial
313	cell surface and several host plasma proteins (22, 23). The role of SasG in virulence is
314	still unclear. It was reasonable to assume that the effect of Eap on pathogenicity is
315	greater than that of SasG, and that biofilm biomass quantified in vitro correlated with
316	pathogenicity. Indeed, the pathogenicity of S. aureus in the silkworm larva model is
317	associated with adhesion to host cells but not toxin production (50). Therefore, it is not

type (Fig. 5). These observations were consistent with the results of conventional crystal

surprising that key players in biofilm formation also contribute to pathogenicity in

319 silkworm larvae.

320	How does MR23 produce the large amount of Eap and SasG and how does such
321	strain emerge? Our preliminary data revealed that <i>agrC</i> and one-third of <i>agrA</i> are
322	spontaneously deleted in MR23 (data hot shown). Dysfunction of agr leads to
323	up-regulation of the expression of surface proteins including Spa and FnBA at the
324	transcriptional (51–53) and protein levels (54, 55). Although regulation of SasG
325	expression is largely unknown, a previous report suggested that the transcription of sasG
326	was increased in agr-dysfunctional isolates (56). In addition, surface proteins are
327	stabilized due to down regulation of the expression of extracellular proteases in agr
328	mutants (57). These data suggest that agr dysfunction may be involved in the enhanced
329	expression and accumulation of SasG in MR23. Previously, it was reported that S.
330	aureus Newman produced a high amount of Eap via enhanced activity of SaeS, a
331	positive regulator of Eap, due to a unique mutation in SaeS (Leu18 to Pro18) (58). The
332	same mutation was not found in MR23, but another mutation was detected in the
333	C-terminal part of SaeS (Val299 to Leu299). It would be interesting to determine whether
334	the latter mutation is also involved in the overproduction of Eap. Glucose was shown to
335	repress SaeS, leading to down regulation of Eap (59); however, MR23 still produced a

336

337	from SaeS, should also be involved in the extremely high amount of Eap in MR23. We
338	found a single-base substitution in the 5'-untranslated region of eap in MR23 compared
339	with other strains (data not shown). This base-substitution may stabilize eap mRNA
340	and/or promote its translation, which could account for the extremely high amount of Eap
341	in MR23.
342	Taken together, the presented findings highlight the functional relationship
343	between a secreted protein and a CWAP in <i>S. aureus</i> biofilm formation and pathogenicity.
344	There may be similar redundancies between Eap and SasG, between other secretion
345	protein(s) and other CWAP(s), between proteins and eDNA, and between
346	polysaccharides and other extracellular substances in other strains and bacteria. In fact,
347	we found redundancy between proteins (Eap and SasG) and eDNA, as the DNase
348	I-resistant biofilm of MR23 became DNase I-sensitive when eap and sasG were deleted
349	(Figs. 3A and S1). In addition, our results indicate for the first time that SasG binds to and
350	stabilizes DNA (Fig. 3B, C). The present paper will provide an important avenue to
351	consider that different biofilm adhesins may play overlapping roles in both biofilm
352	formation and infection. This knowledge may contribute to the development of anti-biofilm
353	therapies targeting multiple biofilm components.

large amount of Eap even in the presence of glucose (34). Therefore, other factors, apart

354 **METHODS**

355	Bacterial strains and culture media. Bacterial strains used in the current study
356	are listed in Table S1. S. aureus strains were grown at 37°C in BHI medium (Becton
357	Dickinson, Franklin lakes, NJ), BHIG medium (Wako, Osaka, Japan), or mannitol salt
358	agar (Merck, Darmstadt, Germany). Escherichia coli strains were grown at 37°C in
359	Luria-Bertani (LB) medium containing 1% (w/v) tryptone (Becton Dickinson), 0.5% (w/v)
360	yeast extract (Becton Dickinson), and 1% (w/v) NaCl. When required, appropriate
361	antibiotics (100 $\mu\text{g}/\text{ml}$ ampicillin and 5 $\mu\text{g}/\text{ml}$ chloramphenicol; Nacalai Tesque, Kyoto,
362	Japan) and an inducer (100 ng/ml aTc; Sigma, St. Louis, MO) were added to the media.
363	Plasmid construction. Mutant strains of S. aureus MR23 were constructed
364	using the <i>E. coli–S. aureus</i> shuttle vector pKOR1 (37) as described by Chiba <i>et al.</i> (60).
365	Briefly, sequences approximately 500-bp upstream and downstream of each target gene
366	were PCR-amplified from MR23 genomic DNA using KOD Plus ver. 2 DNA polymerase
367	(Toyobo, Osaka, Japan) and the appropriate primer sets (Table S2). The fragments were
368	connected by splicing using overlap extension PCR (36). The generated PCR products
369	were cloned into pKOR1 using the Gateway BP Clonase II enzyme mix (Life
370	Technologies, Palo Alto, CA); the resulting plasmids are described in Table S2.
371	Plasmids for the complementation of the respective gene deletions were

 \mathbb{A}

22

 $\overline{\mathbb{A}}$

372

373

374	genomic DNA using KOD Plus ver. 2 DNA polymerase and primers listed in Table S2.
375	The amplified fragments were cloned into pLC1 linearized by inverse PCR with primers
376	pLC1-F and pLC1-R (Table S2) using the GeneArt Seamless cloning and assembly kit
377	(Life Technologies) according to the manufacturer's instructions.
378	To overproduce recombinant N-terminally His ₆ -tagged SasG (His-SasG) in <i>E. coli</i> ,
379	the fragment encoding MR23 SasG lacking the signal sequence and the C-terminal
380	portion with the LPXTG motif (amino acid residues 51–954) was PCR-amplified from the
381	MR23 genome using KOD Plus Neo DNA polymerase (Toyobo), and the primers
382	pCold-SasG-F and pCold-SasG-R (Table S2). The amplified fragment was cloned into
383	pCold I (Takara, Otsu, Japan) using the GeneArt Seamless cloning and assembly kit, as
384	above. The resultant plasmid was named pCold-SasG (Table S1).
385	Oligonucleotide primers (Table S2) were synthesized by Life Technologies.
386	Construction of deletion mutants. Plasmids derived from pKOR1, described
387	above, were used to transform S. aureus RN4220 by electroporation (62). After
388	purification, the plasmids were introduced into strain MR23 by electroporation, and the
389	target genes were deleted from the MR23 genome by in-frame deletion as described

constructed using the E. coli-S. aureus shuttle vector pLC1 as previously described (61).

Briefly, *eap*, *srtA*, $sasG^{WT}$, $sasG^{\Delta L}$, and *eap*- $sasG^{WT}$ genes were PCR-amplified from

390	previously (32, 45) (Table S1). Similarly, RN4220 isogenic mutants were generated.
391	Biofilm formation. Overnight S. aureus cultures grown in BHI medium at 37°C
392	were diluted 1000 times in BHIG. Then, 200- μ l suspensions were cultured at 37°C for 24
393	h in 96-well polystyrene flat-bottom plates (Corning, Corning, NY). When required, aTc
394	(100 ng/ml), an inducer, and chloramphenicol (5 $\mu\text{g/ml}),$ a selective agent, were added to
395	the culture medium from the onset of biofilm formation. Biofilms formed on plastic surface
396	were washed twice with 200 μl of phosphate-buffered saline and stained with 200 μl of
397	0.05% (w/v) crystal violet for 5 min at 25°C. After staining, biofilms were washed once
398	with 200 μI of phosphate-buffered saline and their mass quantified by measuring the
399	absorbance at 595 nm using a microplate reader Infinite F200 Pro (Tecan, Männedorf,
400	Switzerland). The limit of the microplate reader was $ABS_{595} = 4.0$.
401	To analyze the biofilm susceptibility to enzymes, proteinase K (100 $\mu\text{g/ml})$
402	(Sigma), DNase I (100 U/ml) (Roche, Mannheim, Germany), or dispersin B (20 $\mu\text{g/ml})$
403	(Kane Biotech, Winnipeg, MB, Canada) (63) were added to 24-h biofilms and incubated
404	for 1 h at 37°C. Biofilm biomass was then quantified as described above.
405	Isolation of ECM, cell wall, and culture supernatant fractions. ECM was
406	isolated from bacteria grown under biofilm-forming conditions as previously reported (60).
407	Briefly, overnight cultures were diluted 1000 times in 10 ml of BHIG medium in 15-ml

408	conical tubes (Becton Dickinson) and statically incubated at 37°C for 24 h. After
409	incubation, the conical tubes were centrifuged at 8000 \times g for 10 min at 25°C to separate
410	bacterial cells from culture supernatant. To extract ECM components, cell pellets were
411	suspended in 100 μl of 1.5 M NaCl solution. The suspensions were centrifuged at 5000 \times
412	g for 10 min at 25°C. The supernatants (ECM fractions) were then transferred to new test
413	tubes. Cell pellets were suspended in 100 μl of 25% (w/v) sucrose (Nacalai Tesque)
414	solution containing 10 mM Tris-HCI (pH 8.0) (Wako) and protease inhibitor cocktail
415	(Nacalai Tesque). The suspensions were treated with lysostaphin (200 $\mu\text{g/ml}$) (Wako) for
416	30 min at 37°C and then centrifuged at 15,000 \times <i>g</i> for 10 min at 25°C. The supernatants
417	were collected as the cell wall fractions. To concentrate the culture supernatants, the
418	supernatants (600 $\mu l)$ were mixed with equal amount of 20% (w/v) trichloroacetic acid
419	(Nacalai Tesque) and incubated for 30 min on ice. After centrifugation at 10,000 \times <i>g</i> for 10
420	min at 4°C, the pellets were washed with 1 ml of acetone (Wako) and centrifuged (10,000
421	$ imes$ <i>g</i> for 10 min at 4°C). The pellets were suspended in 60 μ l of SDS sample buffer [125
422	mM Tris-HCI (pH 6.8), 4% (w/v) SDS, 20% (w/v) glycerol, 10% (v/v) 2-mercaptoethanol]
423	and used as concentrated (10×) culture supernatant fractions.
424	Purification of recombinant SasG. His-SasG was overexpressed from

425 pCold-SasG in *E. coli* BLR (DE3) cells (Table S1), which were grown at 30°C in 1 I of LB

426	medium containing 100 $\mu\text{g/mL}$ ampicillin. Expression of His-SasG was induced by the
427	addition of isopropyl β -D-1-thiogalactopyranoside (1 mM) and incubating at 15°C for 24 h.
428	Cells were harvested by centrifugation and resuspended in 50 ml of buffer A [20 mM
429	Tris-HCI (pH 8.0) and 300 mM NaCI] supplemented with protease inhibitor cocktail
430	(Nacalai Tesque). After sonication on ice, cell lysates were centrifuged at 8500 $ imes$ g for 30
431	min at 4°C, and the supernatant was loaded onto 2-ml bed volume of TALON resin
432	(Takara) that had been washed with buffer A supplemented with 5 mM imidazole.
433	Recombinant proteins were eluted using 250 mM imidazole. Eluted fractions were
434	dialyzed against buffer B [20 mM Tris-HCl (pH 8.0), 1 mM dithiothreitol, and 20% (w/v)
435	glycerol] using Slide-A-Lyzer dialysis cassettes (Thermo Fisher, Waltham, MA), and
436	purified by chromatography using a HiTrap Q column (GE Healthcare, Pittsburgh, PA)
437	and 0–1 M NaCl gradient in buffer C [20 mM Tris-HCl (pH 8.0), 1 mM dithiothreitol, and
438	10% (w/v) glycerol]. Purified His-SasG was pooled and quantified using Bradford assay
439	kit (Bio-Rad Laboratories, Hercules, CA).
440	Characterization of proteins in ECM, cell wall, and culture supernatant
441	fractions. The amount of proteins in the ECM fractions was standardized to the wet
442	weight of bacterial pellets before ECM fraction isolation. Protein concentrations in the cell
443	wall fractions were determined using Pierce protein assay reagent (Thermo Fisher).

 $\overline{\triangleleft}$

444

445	Tokyo, Japan). After SDS-PAGE, the gels were stained with CBB (Nacalai Tesque) or
446	used for western blotting.
447	Western blotting. After SDS-PAGE, proteins were transferred to a
448	polyvinylidene difluoride membrane using iBlot 2 dry blotting system (Thermo Fisher).
449	The membrane was treated for 30 min at 25°C with 1% (w/v) skimmed milk (Wako)
450	dissolved in Tris-buffered saline (TBS-T) composed of 10 mM Tris-HCI (pH 7.4) (Wako),
451	100 mM NaCl, and 0.1% (v/v) Tween 20. After gentle washing with TBS-T, the membrane
452	was probed with anti-SasG primary rabbit polyclonal antibody [developed by Eurofins
453	Genomics (Tokyo, Japan) using purified His-SasG as the antigen] diluted 5000 times in
454	CanGet Signal 1 (Toyobo), for 1 h at 25°C. The membrane was washed twice with TBS-T
455	and was subsequently incubated with a secondary goat anti-rabbit IgG antibody
456	conjugated with horse radish peroxidase (BioRad Laboratories) diluted 100,000 times in
457	CanGet Signal 2 (Toyobo), for 1 h at 25°C. After washing three times with TBS-T, the
458	signal was detected using ECL prime western blotting detection reagent (GE Healthcare)
459	and LAS-4000 Image Analyzer (GE Healthcare).
460	Gel shift assay. Purified SasG (0.1, 0.5, and 1 μ M) was mixed with purified

 $_{461}$ $\,$ lambda DNA (15 $\mu g/ml,$ Takara) in buffer containing 0.5 mM Tris-HCl (pH 8.0) and 0.05 $\,$

Standardized amounts of proteins were resolved on 15% (w/v) polyacrylamide gels (Atto,

 \mathbb{A}

462	mM EDTA. After incubation at 25°C for 1 h, the samples were analyzed by agarose gel
463	electrophoresis with ethidium bromide staining.
464	DNA protection assay. Purified lambda DNA (15 µg/ml, Takara) was
465	pre-incubated with or without purified SasG (1 μ M) in buffer containing 400 mM Tris-HCI
466	(pH 7.9), 100 mM NaCl, 60 mM MgCl ₂ , and 10 mM CaCl ₂ at 25°C for 30 min. Then,
467	DNase I (1 U/ml) was added to the mixture. At the indicated time points, small aliquots of
468	the mixture were taken, mixed with proteinase K (1 mg/ml), and incubated at 25° C for 10
469	min to digest DNase I and SasG. The residual DNA was analyzed by agarose gel
470	electrophoresis. Band intensities were measured using LAS-4000 Image Analyzer.
471	CLSM. Overnight bacterial cultures grown in BHI medium at 37°C were diluted
472	1000 times in BHIG and incubated at 37°C for 24 h on glass-bottomed dish (35-mm
473	diameter; Matsunami Glass, Osaka, Japan). Biofilms were fixed with 1% (w/v)
474	glutaraldehyde for 10 min at 25°C (Wako). After glutaraldehyde removal, 50 mM
475	ammonium chloride (Kanto Chemical, Tokyo, Japan) was added to quench the residual
476	glutaraldehyde. The fixed biofilms were stained with 25 μM of thioflavin T (AAT Bioquest,
477	Sunnyvale, CA), which binds to bacterial RNA and is used to visualize bacterial cells (64).
478	Three-dimensional biofilm structures were observed using LSM880 confocal laser
479	scanning microscope with a $63 \times$ oil objective lens (Carl Zeiss, Oberkochen, Germany).

Thioflavin T fluorescence was detected using excitation at 458 nm and emission at 470–
510 nm. All z-sections were collected at 0.25-μm intervals and three-dimensional
structures were reconstructed using the free microscope software ZEN for ZEISS
Microscopy (Carl Zeiss).

Evaluation of S. aureus pathogenicity in the silkworm model. Fifth instar 484silkworm larvae of B. mori (S30 × xe5) were obtained from the Institute of Genetic 485Resources Faculty of Agriculture (Kyusyu University, Fukuoka, Japan). To prepare 486 bacterial suspensions, 700 μ l of overnight cultures were centrifuged at 8000 \times g for 5 min 487at 25°C. The pellets were washed with 700 µl of 0.6% NaCl solution, centrifuged at 8000 488 \times g for 5 min at 25°C, and re-suspended in 700 µl of 0.6% NaCl solution. Then, 50 µl of 489 bacterial suspensions were injected (1×10^7 CFU) into the hemolymph through the dorsal 490 491 vessel using 30-G syringe (Becton Dickinson). Pressure was immediately applied to the 492injection site for 20 s to stop leakage of the body fluid. As a control, larvae were injected 493with 50 µl of 0.6% NaCl solution. Larval survival was observed at 25°C for 60 h without 494 feeding.

Downloaded from http://iai.asm.org/ on January 23, 2019 by guest

To evaluate bacterial survival in silkworm larvae, the rear legs of injected
silkworms were cut with scissors and the body fluid was collected, 24 h after injection of
bacteria. After 10-fold serial dilution, samples were spread on mannitol salt agar plates

498

selective for *S. aureus*, incubated at 37°C overnight, and the colonies counted.

499	Accession numbers. Nucleotide sequences of eap and sasG from S. aureus
500	MR23 determined in the current study have been deposited in the DDBJ database under
501	the accession numbers LC388386 and LC388387, respectively.
502	Statistical analyses. Statistical analysis of biofilm biomass was performed using
503	EZR software (57). ANOVA and Student's <i>t</i> -test were used to assess significant
504	differences in biofilm formation between bacterial strains and in enzyme susceptibility
505	between treatments. For multiple group comparisons, Kruskal-Wallis and Mann-Whitney
506	U-tests with Bonferroni correction were used to determine whether any of the groups
507	exhibited statistically significant different thickness of biofilms. The log-rank test was
508	used to assess significant differences in the pathogenicity of bacterial strains in the
509	silkworm model. For all statistical analyses, $P < 0.05$ was considered significant.

 \mathbb{A}

510 Acknowledgements

511 The authors acknowledge Dr. Bae for providing pKOR1; Dr. Cui for gifting pLC1; Ms.

512 Anne-Aurelie Lopes for critical reading of the manuscript; and all members of the

513 Department of Bacteriology in Jikei University for stimulating discussions. This work was

- 514 in part supported by a Grant-in-Aid for Young Scientists (A) from JSPS (no. 15H05619 to
- 515 S.S.); a Grant-in-Aid for Scientific Research (B) from JSPS (no. 26293100 to Y.M.); a
- 516 grant from the MEXT-Supported Program for the Strategic Research Foundation at

517 Private Universities, 2012–2016 (to Y.M.); and JST ERATO (no. JPMJER1502 to S.S.).

Downloaded from http://iai.asm.org/ on January 23, 2019 by guest

518 The authors declare no conflict of interests.

519

520 Author contributions

521 A.C., S.S., and Y.M. planned the project. K.Y., A.C., and S.S. designed the experiments

522 K.Y., A.C., and S.S. performed the experiments and analyzed the data. C.S. developed

523 Nanogold- and heavy metal-labeling for biofilms and assisted during ASEM analysis. K.Y.,

A.C., and S.S. wrote the paper with input from M.S., Y.K., K.M., and Y.M.

Accepted Manuscript Posted Online

525	References

526	1.	Flemming H-C, Neu TR, Wozniak DJ. 2007. The EPS Matrix: The "House of Biofilm
527		Cells." J Bacteriol 189:7945–7947.
528	2.	Hall-Stoodley L, Costerton JW, Stoodley P. 2004. Bacterial biofilms: from the
529		Natural environment to infectious diseases. Nat Rev Microbiol 2:95–108.
530	3.	Costerton JW. 1999. Bacterial Biofilms: A Common Cause of Persistent Infections.
531		Science (80-) 284:1318–1322.
532	4.	Lebeaux D, Ghigo J-M, Beloin C. 2014. Biofilm-Related Infections: Bridging the
533		Gap between Clinical Management and Fundamental Aspects of Recalcitrance
534		toward Antibiotics. Microbiol Mol Biol Rev 78:510–543.
535	5.	Mah T-FC, O'Toole GA. 2001. Mechanisms of biofilm resistance to antimicrobial
536		agents. Trends Microbiol 9:34–39.
537	6.	Römling U, Balsalobre C. 2012. Biofilm infections, their resilience to therapy and
538		innovative treatment strategies. J Intern Med 272:541-561.
539	7.	Kluytmans J, Belkum A van, Verbrugh H. 1997. Nasal Carriage of Staphylococcus
540		aureus: Epidemiology, Underlying Mechanisms, and Associated Risks. Clin
541		Microbiol Rev 10:505–520.
542	8.	Wertheim HF, Melles DC, Vos MC, van Leeuwen W, van Belkum A, Verbrugh H a,
543		Nouwen JL. 2005. The role of nasal carriage in Staphylococcus aureus infections.
544		Lancet Infect Dis 5:751–762.
545	9.	Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW. 2012. Biofilm

546		formation in Staphylococcus implant infections. A review of molecular mechanisms
547		and implications for biofilm-resistant materials. Biomaterials 33:5967–5982.
548	10.	Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG. 2015.
549		Staphylococcus aureus Infections: Epidemiology, Pathophysiology, Clinical
550		Manifestations, and Management. Clin Microbiol Rev 28:603-661.
551	11.	Bhattacharya M, Wozniak DJ, Stoodley P, Hall-Stoodley L. 2015. Prevention and
552		treatment of Staphylococcus aureus biofilms. Expert Rev Anti Infect Ther 13:1499-
553		1516.
554	12.	Flemming H-C, Wingender J. 2010. The biofilm matrix. Nat Rev Microbiol 19:139-
555		150.
556	13.	O'Neill E, Pozzi C, Houston P, Smyth D, Humphreys H, Robinson DA, O'Gara JP.
557		2007. Association between Methicillin Susceptibility and Biofilm Regulation in
558		Staphylococcus aureus Isolates from Device-Related Infections. J Clin Microbiol
559		45:1379–1388.
560	14.	Whitchurch CB. 2002. Extracellular DNA Required for Bacterial Biofilm Formation.
561		Science (80-) 295:1487–1487.
562	15.	Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D, Chandramohan L, Tsang LH,
563		Smeltzer MS, Horswill AR, Bayles KW. 2009. Modulation of eDNA Release and
564		Degradation Affects Staphylococcus aureus Biofilm Maturation. PLoS One
565		4:e5822.
566	16.	Das T, Sehar S, Manefield M. 2013. The roles of extracellular DNA in the structural

567		integrity of extracellular polymeric substance and bacterial biofilm development.
568		Environ Microbiol Rep 5:778–786.
569	17.	Cramton SE, Ulrich M, Gotz F, Doring G. 2001. Anaerobic Conditions Induce
570		Expression of Polysaccharide Intercellular Adhesin in Staphylococcus aureus and
571		Staphylococcus epidermidis. Infect Immun 69:4079–4085.
572	18.	Vergara-Irigaray M, Maira-Litran T, Merino N, Pier GB, Penades JR, Lasa I. 2008.
573		Wall teichoic acids are dispensable for anchoring the PNAG exopolysaccharide to
574		the Staphylococcus aureus cell surface. Microbiology 154:865-877.
575	19.	Arciola CR, Campoccia D, Ravaioli S, Montanaro L. 2015. Polysaccharide
576		intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect
577		Microbiol 5:1–10.
578	20.	O'Gara JP. 2007. ica and beyond: biofilm mechanisms and regulation in
579		Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett
580		270:179–188.
581	21.	Hussain M, von Eiff C, Sinha B, Joost I, Herrmann M, Peters G, Becker K. 2008.
582		eap Gene as Novel Target for Specific Identification of Staphylococcus aureus. J
583		Clin Microbiol 46:470–476.
584	22.	Haggar A, Hussain M, Lonnies H, Herrmann M, Norrby-Teglund A, Flock J-I. 2003.
585		Extracellular Adherence Protein from Staphylococcus aureus Enhances
586		Internalization into Eukaryotic Cells. Infect Immun 71:2310–2317.
587	23.	Chavakis T, Wiechmann K, Preissner KT, Herrmann M. 2005. Staphylococcus

 $\overline{\triangleleft}$

Infection and Immunity

Downloaded from http://iai.asm.org/ on January 23, 2019 by guest

35

609	30.	Kuroda M, Ito R, Tanaka Y, Yao M, Matoba K, Saito S, Tanaka I, Ohta T. 2008.
610		Staphylococcus aureus surface protein SasG contributes to intercellular
611		autoaggregation of Staphylococcus aureus. Biochem Biophys Res Commun
612		377:1102–1106.
613	31.	Geoghegan JA, Corrigan RM, Gruszka DT, Speziale P, O'Gara JP, Potts JR,
614		Foster TJ. 2010. Role of Surface Protein SasG in Biofilm Formation by
615		Staphylococcus aureus. J Bacteriol 192:5663–5673.
616	32.	Conrady DG, Brescia CC, Horii K, Weiss AA, Hassett DJ, Herr AB. 2008. A
617		zinc-dependent adhesion module is responsible for intercellular adhesion in
618		staphylococcal biofilms. Proc Natl Acad Sci 105:19456–19461.
619	33.	Formosa-Dague C, Speziale P, Foster TJ, Geoghegan JA, Dufrêne YF. 2016.
620		Zinc-dependent mechanical properties of Staphylococcus aureus biofilm-forming
621		surface protein SasG. Proc Natl Acad Sci 113:410-415.
622	34.	Sugimoto S, Sato F, Miyakawa R, Chiba A, Onodera S, Hori S, Mizunoe Y. 2018.
623		Broad impact of extracellular DNA on biofilm formation by clinically isolated
624		Methicillin-resistant and -sensitive strains of Staphylococcus aureus. Sci Rep 8:1-
625		11.
626	35.	Sugimoto S, Iwamoto T, Takada K, Okuda K, Tajima A, Iwase T, Mizunoe Y. 2013.
627		Staphylococcus epidermidis Esp Degrades Specific Proteins Associated with
628		Staphylococcus aureus Biofilm Formation and Host-Pathogen Interaction. J
629		Bacteriol 195:1645–1655.

Downloaded from http://iai.asm.org/ on January 23, 2019 by guest

36

630 36. Horton RM, Hunt HD, Ho SN, Pullen JK, Pease LR. 1989. Engineering hybrid 631 genes without the use of restriction enzymes: gene splicing by overlap extension. 632 Gene 77:61-68. 633 37. Bae T, Schneewind O. 2006. Allelic replacement in Staphylococcus aureus with 634 inducible counter-selection. Plasmid 55:58-63. Lévesque CM, Voronejskaia E, Huang YC, Mair RW, Ellen RP, Cvitkovitch DG. 635 38. 636 2005. Involvement of sortase anchoring of cell wall proteins in biofilm formation by 637 Streptococcus mutans. Infect Immun 73:3773-7. 638 Franciosa G, Maugliani A, Scalfaro C, Floridi F, Aureli P. 2009. Expression of 39. 639 internalin A and biofilm formation among Listeria monocytogenes clinical isolates. 640 Int J Immunopathol Pharmacol 22:183-93. 641 Reardon-Robinson ME, Wu C, Mishra A, Chang C, Bier N, Das A, Ton-That H. 40. 642 2014. Pilus hijacking by a bacterial coaggregation factor critical for oral biofilm 643 development. Proc Natl Acad Sci 111:3835-3840. Sanchez CJ, Shivshankar P, Stol K, Trakhtenbroit S, Sullam PM, Sauer K, 644 41. Hermans PWM, Orihuela CJ. 2010. The pneumococcal serine-rich repeat protein is 645 646 an intraspecies bacterial adhesin that promotes bacterial aggregation in Vivo and in biofilms. PLoS Pathog 6:33-34. 647 648 42. Rohde H, Burdelski C, Bartscht K, Hussain M, Buck F, Horstkotte MA, Knobloch 649 JKM, Heilmann C, Herrmann M, Mack D. 2005. Induction of Staphylococcus 650 epidermidis biofilm formation via proteolytic processing of the

 \triangleleft

651

Microbiol 55:1883-1895. 652 Kreiswirth BN, Löfdahl S, Betley MJ, O'Reilly M, Schlievert PM, Bergdoll MS, 65343. 654 Novick RP. 1983. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305:709–12. 655656 44. Eisenbeis J, Saffarzadeh M, Peisker H, Jung P, Thewes N, Preissner KT, Herrmann M, Molle V, Geisbrecht B V., Jacobs K, Bischoff M. 2018. The 657658 Staphylococcus aureus Extracellular Adherence Protein Eap Is a DNA Binding Protein Capable of Blocking Neutrophil Extracellular Trap Formation. Front Cell 659 660 Infect Microbiol 8:1–12. 661 45. Sugimoto S, Okuda K, Miyakawa R, Sato M, Arita-Morioka K, Chiba A, Yamanaka 662 K, Ogura T, Mizunoe Y, Sato C. 2016. Imaging of bacterial multicellular behaviour 663 in biofilms in liquid by atmospheric scanning electron microscopy. Sci Rep 664 6:25889. Kaito C, Akimitsu N, Watanabe H, Sekimizu K. 2002. Silkworm larvae as an animal 665 46. 666 model of bacterial infection pathogenic to humans. Microb Pathog 32:183–190. 667 47. Geisbrecht B V., Hamaoka BY, Perman B, Zemla A, Leahy DJ. 2005. The Crystal 668 Structures of EAP Domains from Staphylococcus aureus Reveal an Unexpected 669 Homology to Bacterial Superantigens. J Biol Chem 280:17243–17250. 670 48. Decker R, Burdelski C, Zobiak M, Büttner H, Franke G, Christner M, Saß K, Zobiak B, Henke HA, Horswill AR, Bischoff M, Bur S, Hartmann T, Schaeffer CR, Fey PD, 671

accumulation-associated protein by staphylococcal and host proteases. Mol

 \triangleleft

672		Rohde H. 2015. An 18 kDa Scaffold Protein Is Critical for Staphylococcus
673		epidermidis Biofilm Formation. PLOS Pathog 11:e1004735.
674	49.	Merino N, Toledo-Arana A, Vergara-Irigaray M, Valle J, Solano C, Calvo E, Lopez
675		JA, Foster TJ, Penadés JR, Lasa I. 2009. Protein A-mediated multicellular behavior
676		in Staphylococcus aureus. J Bacteriol 191:832-843.
677	50.	Miyazaki S, Matsumoto Y, Sekimizu K, Kaito C. 2012. Evaluation of
678		Staphylococcus aureus virulence factors using a silkworm model. FEMS Microbiol
679		Lett 326:116–124.
680	51.	Pohl K, Francois P, Stenz L, Schlink F, Geiger T, Herbert S, Goerke C, Schrenzel J,
681		Wolz C. 2009. CodY in Staphylococcus aureus: a Regulatory Link between
682		Metabolism and Virulence Gene Expression. J Bacteriol 191:2953–2963.
683	52.	Saravia-Otten P, Müller HP, Arvidson S. 1997. Transcription of Staphylococcus
684		aureus fibronectin binding protein genes is negatively regulated by agr and an
685		agr-independent mechanism. J Bacteriol 179:5259–5263.
686	53.	Xiong Y-Q, Bayer AS, Yeaman MR, Van Wamel W, Manna AC, Cheung AL. 2004.
687		Impacts of sarA and agr in Staphylococcus aureus strain Newman on
688		fibronectin-binding protein A gene expression and fibronectin adherence capacity
689		in vitro and in experimental infective endocarditis. Infect Immun 72:1832-6.
690	54.	Wolz C, McDevitt D, Foster TJ, Cheung AL. 1996. Influence of agr on fibrinogen
691		binding in Staphylococcus aureus Newman. Infect Immun 64:3142–7.
692	55.	Rom JS, Atwood DN, Beenken KE, Meeker DG, Loughran AJ, Spencer HJ, Lantz

Downloaded from http://iai.asm.org/ on January 23, 2019 by guest

Downloaded from http://iai.asm.org/ on January 23, 2019 by guest

Infection and Immunity

693

694 modulate biofilm formation in the USA300 strain LAC on virulence in a murine 695 bacteremia model. Virulence 8:1776–1790. 696 Ferreira FA, Souza RR, de Sousa Moraes B, de Amorim Ferreira AM, Américo MA, 56. 697 Fracalanzza SEL, dos Santos Silva Couceiro JN, Sá Figueiredo AM. 2013. Impact 698 of agr dysfunction on virulence profiles and infections associated with a novel methicillin-resistant Staphylococcus aureus (MRSA) variant of the lineage 699 700 ST1-SCCmec IV. BMC Microbiol 13:93. 701 Houston P, Rowe SE, Pozzi C, Waters EM, O'Gara JP. 2011. Essential Role for 57. 702 the Major Autolysin in the Fibronectin-Binding Protein-Mediated Staphylococcus 703 aureus Biofilm Phenotype. Infect Immun 79:1153-1165. 704 Mainiero M, Goerke C, Geiger T, Gonser C, Herbert S, Wolz C. 2010. Differential 58. 705Target Gene Activation by the Staphylococcus aureus Two-Component System 706 saeRS. J Bacteriol 192:613-623. 707 Harraghy N, Kormanec J, Wolz C, Homerova D, Goerke C, Ohlsen K, Qazi S, Hill P, 59. 708 Herrmann M. 2005. sae is essential for expression of the staphylococcal adhesins 709 Eap and Emp. Microbiology 151:1789-800. 710 Chiba A, Sugimoto S, Sato F, Hori S, Mizunoe Y. 2015. A refined technique for 60. 711 extraction of extracellular matrices from bacterial biofilms and its applicability. 712Microb Biotechnol 8:392-403. Cui L, Neoh H, Iwamoto A, Hiramatsu K. 2012. Coordinated phenotype switching 71361.

TL, Smeltzer MS. 2017. Impact of Staphylococcus aureus regulatory mutations that

 \triangleleft

714		with large-scale chromosome flip-flop inversion observed in bacteria. Proc Natl
715		Acad Sci 109:E1647–E1656.
716	62.	Schenk S, Laddaga RA. 1992. Improved methodd for electroporation of
717		Staphylococcus aureus. FEMS Microbiol Lett 94:133–138.
718	63.	Kaplan JB, Ragunath C, Ramasubbu N, Fine DH. 2003. Detachment of
719		Actinobacillus actinomycetemcomitans Biofilm Cells by an Endogenous
720		β-Hexosaminidase Activity. J Bacteriol 185:4693–4698.
721	64.	Sugimoto S, Arita-Morioka K, Mizunoe Y, Yamanaka K, Ogura T. 2015. Thioflavin
722		T as a fluorescence probe for monitoring RNA metabolism at molecular and cellular
723		levels. Nucleic Acids Res 43:e92–e92.
724	65.	Kanda Y. 2013. Investigation of the freely available easy-to-use software 'EZR' for
725		medical statistics. Bone Marrow Transplant 48:452–458.

726

Accepted Manuscript Posted Online

Infection and Immunity

727 Figure legend	S
-------------------	---

728	FIG 1 Eap and SrtA play redundant roles in biofilm formation. (A) Biomasses of biofilms
729	formed by MR23 wild-type (WT), Δeap , $\Delta srtA$, and $\Delta eap \Delta srtA$ strains grown in BHIG at
730	37°C for 24 h were determined by crystal violet staining. (B) Reduced biomass of Δeap
731	$\Delta srtA$ strain biofilm was complemented by providing plasmid-encoded Eap or SrtA.
732	Empty vector (pLC1) was introduced into WT and $\Delta eap \Delta srtA$ strains as a positive and
733	negative control, respectively. The data are presented relative to the positive control,
734	designated as 100%. (A, B) The means and standard deviations of biofilm biomass from
735	three independent experiments are shown. **, $P < 0.01$; NS, not significant. (C) Protein
736	profiles of ECM isolated from WT pLC1, $\triangle eap \Delta srtA$ pLC1, $\triangle eap \Delta srtA$ pEap, and $\triangle eap$
737	$\Delta srtA$ pSrtA strains were analyzed by SDS-PAGE with Coomassie Brilliant Blue (CBB)
738	staining. Prominent bands indicated by an arrowhead correspond to Eap (35). (D) Cell
739	wall fractions of the indicated strains were analyzed by SDS-PAGE with CBB staining.
740	The images are representative of at least three independent analyses.
741	
742	FIG 2 Identification of CWAPs responsible for biofilm formation in MR23. (A, B)

- Biomasses of biofilms produced by the indicated strains were quantified as described in
- Fig. 1. The means and standard deviations of biofilm biomasses from three independent

Downloaded from http://iai.asm.org/ on January 23, 2019 by guest

isolated from the indicated strains were analyzed by SDS-PAGE with CBB staining. (D)
Proteins in the cell wall fractions of the indicated strains were subjected to SDS-PAGE
with CBB staining, or western blotting with anti-SasG antibody.
FIG 3 SasG is a DNA-binding protein. (A) DNase I-sensitivities of the biofilms formed by
the indicated strains are shown. Relative biofilm biomasses are shown (non-treated
biofilms are defined as 100%). Original data are shown in Figure S1, absence; +,
presence. (B) DNA-binding capacity of SasG was analyzed by gel shift assay. Purified
SasG (0.1, 0.5, and 1 $\mu M)$ was mixed with lambda DNA ($\lambda DNA)$ prior to agarose gel
electrophoresis. (C) Degradation of λ DNA by DNase I was analyzed in the presence and
absence of purified SasG. After the treatment, DNase I and SasG were degraded by
proteinase K, and the residual DNA was analyzed by agarose gel electrophoresis. Band
intensities were measured using LAS-4000 Image Analyzer and the relative intensities
are shown in the graph.

FIG 4 LPXTG motif in SasG plays a role in compensating for the loss of Eap in biofilm formation. (A) The domain structure of MR23 SasG. S, signal peptide; A, A domain; B, B

experiments are shown. **, P < 0.01; NS, not significant. (C) Protein profiles of ECM

Σ	764	were constructed in the current study (Table S1). (B) Biomass of biofilms produced by the
spted	765	indicated strains was determined as described in Fig. 1. The means and standard
Acce	766	deviations from three independent experiments are shown. **, $P < 0.01$. (C, D) SasG
	767	proteins in the cell wall fractions (C) and culture supernatants (D) were analyzed by
	768	western blotting using anti-SasG antibody.
	769	
	770	FIG 5 Three-dimensional structure of bacterial biofilms. (A) Biofilms formed by the
munity	771	indicated strains were stained with thioflavin T and analyzed using CLSM. Typical top
and Im	772	oblique and side views of the biofilms are shown. (B) Thickness of the biofilms formed in
nfection	773	three independent dishes was determined using Image J software. The line in each box
	774	and whisker plot represents the median thickness of biofilms formed by the indicated
	775	strains. O, outlying values; **, $P < 0.01$; NS, not significant.
	776	

763

FIG 6 Evaluation of the pathogenicity of S. aureus strains in silkworm larvae. Ten 777 silkworm larvae were injected with diluted overnight cultures (1 \times 10⁷ CFU) of the 778779 indicated strains. Larval survival was monitored at 25°C for 60 h. The curves are 780representative of at least three independent experiments. The differences between WT

domain; and LPXTG, LPXTG motif. Plasmids for the expression of SasG^{WT} and SasG^{ΔL}

781	and $\triangle eap \triangle sasG$ strains, or between w	i and the injection	Control (0.6%	Naci solution)

- were statistically significant (P < 0.05 and P < 0.01, respectively). By contrast, no
- statistical difference was apparent between WT and Δeap strain treatments, or between
- 784 WT and $\triangle sasG$ strain treatments (P > 0.05).

= ----

Accepted Manuscript Posted Online

С

Yonemoto et al. Figure 2

Yonemoto et al. Figure 3

Yonemoto et al. Figure 4

Downloaded from http://iai.asm.org/ on January 23, 2019 by guest

Yonemoto et al. Figure 5

15

10

0 9

+×Y

Deap

Lsas C Leap Lsas C

Yonemoto et al. Figure 6

