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miR-425 regulates inflammatory cytokine production in CD4+ T
cells via N-Ras upregulation in primary biliary cholangitis
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Background & Aims: Primary biliary cholangitis (PBC) is an leading to activation of T cell receptor signalling pathways,

autoimmune liver disease of unknown pathogenesis. Conse- involved in inflammation. One particular target, N-Ras, could be

quently, therapeutic targets for PBC have yet to be identified.
CD4+ T cells play a pivotal role in immunological dysfunction
observed in PBC, and therefore, microRNA (miRNA) and mRNA
expression were analysed in CD4+ T cells, to investigate PBC
pathogenesis and identify novel therapeutic targets.
Methods: Integral miRNA and mRNA analysis of 14 PBC patients
and ten healthy controls was carried out using microarray and
quantitative real-time polymerase chain reaction (qRT-PCR), with
gene set enrichment analysis. The functional analyses of miRNA
were then assessed using reporter and miRNA-overexpression
assays.
Results: The integral analysis of miRNA and mRNA identified four
significantly downregulated miRNAs (miR-181a, -181b, -374b,
and -425) related to the T cell receptor (TCR) signalling pathway
in CD4+ T cells of PBC. N-Ras, a regulator of the TCR signalling
pathway, was found to be targeted by all four identified miRNAs.
In addition, in vitro assays confirmed that decreased miR-425
strongly induced inflammatory cytokines (interleukin [IL]-2 and
interferon [IFN]-c) via N-Ras upregulation in the TCR signalling
pathway.
Conclusion: The decreased expression of four miRNAs that
dysregulate TCR signalling in PBC CD4+ T cells was identified.
miR-425 was demonstrated as an inflammatory regulator of
PBC via N-Ras upregulation. Therefore, the restoration of
decreased miR-425 or the suppression of N-Ras may be a promis-
ing immunotherapeutic strategy against PBC.
Lay summary: Primary biliary cholangitis (PBC) is an autoim-
mune liver disease, but the causes are unknown. MicroRNAs are
molecules known to regulate biological signals. In this study, four
microRNAs were identified as being decreased in PBC patients,
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an attractive and novel immunotherapeutic option for PBC.
Transcript profiling:Microarray data are deposited in GEO (GEO
accession: GSE93172).
� 2017 European Association for the Study of the Liver. Published
by Elsevier B.V. All rights reserved.
Introduction

Primary biliary cholangitis (PBC), formerly known as primary bil-
iary cirrhosis, is a progressive autoimmune liver disease of
unknown pathogenesis that predominantly affects middle-aged
females [1–3]. Ursodeoxycholic acid (UDCA) treatment slows dis-
ease progression in most patients; nevertheless, 10 years after
diagnosis, approximately 32% of PBC patients in a late histologic
stage and approximately 6% of patients in an early histologic
stage, progress to liver transplantation or death due to liver fail-
ure [4]. Therefore, there is a substantial clinical need for novel
treatments based on an understanding of PBC pathogenesis.

CD4+ T cells play a pivotal role in PBC pathogenesis [5]. Patho-
logically, the numbers of autoreactive CD4+ T cells against E2
subunits of the pyruvate dehydrogenase complex, the target of
anti-mitochondrial antibodies, increase in the peripheral blood,
liver and liver-draining lymph nodes of PBC patients [6]. Antigens
are presented to CD4+ T cells on the surface of biliary epithelial
cells in PBC patients by major histocompatibility complex
(MHC)-I and -II proteins [7,8]. Increased levels of interferon
(IFN)-c, a Th1 cytokine, are considered to be a characteristic of
PBC [9,10]. However, details of the molecular mechanisms occur-
ring in CD4+ T cells during PBC pathogenesis remain poorly
understood.

miRNAs represent a subclass of small noncoding RNAs of
19–24 nucleotides in length that regulate the transcription and
translation of target genes via complementary binding to the
30-untranslated region (UTR) [11–13]. miRNAs target and regu-
late cell type-specific biological processes, including those of
the immune system [14,15]. Recent studies have demonstrated
that miRNAs play a critical role in the pathogenesis of various
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Total RNA from CD4+ T cells (PBC, n = 14; control, n = 10)

miRNA microarray
PBC, n = 6; control, n = 6
assessed miRNA: 1222

mRNA microarray
PBC, n = 6; control, n = 6
assessed mRNA: 19,366

(p <0.05, |FC| >1.2)

16 differentially expressed
miRNAs

(increased/decreased: 1/15)
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liver and autoimmune diseases [16–18]. In PBC, differentially
expressed miRNAs have been identified in liver tissue, biliary
epithelium, serum, and peripheral blood mononuclear cells
(PBMCs) [19–22]. In addition, mRNA profiling studies in PBC have
also been reported [7,23,24]. However, no studies have yet anal-
ysed miRNA or mRNA expression profiles in CD4+ T cells isolated
from PBC patients. Therefore, we aimed to analyse miRNA and
mRNA expression integrally in CD4+ T cells isolated from PBC
patients to further understand the pathological mechanisms
underlying PBC pathogenesis and to identify novel therapeutic
targets for PBC. In this study, miRNA and mRNA expression
in CD4+ T cells of PBC patients were integrally profiled,
miRNA-target gene pairs potentially involved in PBC pathogene-
sis were elucidated, and dysregulated PBC-associated signalling
pathways were identified by uncovering miRNA-target gene pairs
in PBC CD4+ T cells. In addition, the regulation of inflammatory
cytokine production by identifying miRNA-target gene pairs via
the modulation of signalling pathways were also confirmed.
The results of the present study demonstrate the identification
of miRNAs and corresponding target genes that play an important
role in PBC pathogenesis.
qRT-PCR 
(PBC, n = 14; control, n = 10)

5 validated miRNAs
miR-181a, -181b, -361-5p, 

-374b, -425
(All validated miRNA levels 

were decreased)

Target prediction

Number of predicted target 
genes from each miRNA

(miR-181a, -181b, -361-5p, 
-374b, -425: 

1440/1437/462/895/526)

5 created miRNA-predicted 
target gene sets for GSEA

Run GSEA (FDR <0.05)

Enriched gene sets in PBC: 4
Patients and methods

Patients and subjects

All PBC patients were diagnosed according to the clinical criteria (including
histology) at an early clinical stage and were receiving treatment with
600 mg/day of UDCA [25]. Healthy controls were not treated with any medicine
and had no evidence of liver disease. Total RNA from peripheral CD4+ T cells of
patients was assessed by microarray and quantitative reverse transcription
polymerase chain reaction (qRT-PCR), was carried out as described in the
Supplementary materials section.

miRNA-mRNA integral analysis

SurePrint G3 human miRNAmicroarray kits 8x60K Rel.16.0 (Agilent Technologies,
Santa Clara, CA, USA) and SurePrint G3 human GE 8x60K microarrays (Agilent
Technologies) were used to analyse the miRNA and mRNA expression profiles
for an integral analysis. The expressions of identified miRNA and mRNA were
Table 1. Clinical data of primary biliary cholangitis (PBC) patients and healthy
controls.

PBC (n = 14)
Mean, SD

Control (n = 10)
Mean, SD

Normal ranges

Age (years) 60.9, 7.2 55.1, 7.6 n.a.
AST (IU/L) 31.8, 14.2 20.4, 2.5* 10–33
ALT (IU/L) 20.6, 6.6 16.7, 4.1 6–35
c-GT (IU/L) 57.6, 47.2 20.4, 7.2* 9–27
ALP (IU/L) 331, 172.1 188.3, 15.0* 96–300
T-Bil (mg/dl) 0.9, 0.4 n.a. 0.2–1.3
Alb (g/dl) 4.0, 0.5 n.a. 3.5–5.2
PT (%) 88.5, 12.1 100.0, 0.0* >70
TC (mg/dl) 193.6, 35.9 201.1, 52.8 120–219
M2 (U/ml) 135.0, 70.5 n.a. <7.0
IgM (mg/dl) 208.2, 132.1 n.a. 35–220

AST, aspartate aminotransferase; ALT, alanine aminotransferase; c-GT, c-glu-
tamyl transpeptidase; ALP, alkaline phosphatase; T-Bil, total bilirubin; Alb,
albumin; PT, prothrombin time; TC, total cholesterol; M2, anti-mitochondrial M2
antibody; IgM, immunoglobulin M; N.A., not available.
* p <0.05.
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validated by qRT-PCR. Target genes of validated miRNA were predicted using
bioinformatics [26–28]. Integral analysis was performed using a gene set enrich-
ment analysis (GSEA), with miRNA-target gene sets as described in the Supple-
mentary materials [29]. Pathway analysis was performed using database
annotation visualisation and integrated discovery (DAVID) v6.7 (http://david.
abcc.ncifcrf.gov) and the database of Kyoto encyclopaedia of genes and genomes
(KEGG) pathway mapping [30,31].
(miR-181a/-181b/-374b/-425)

mRNA expression 
(p <0.05, |FC| >1.5)

74 candidate target genes of 
the 4 enriched miRNAs
(miR-181a, -181b, -374b, 

-425: 53/53/35/14)

Pathway analysis using 
DAVID (p <0.05)

6 activated pathways including 
candidate target genes in PBC

• T-cell receptor signaling pathway
• MAPK signaling pathway
• Allograft rejection
• Graft-versus-host disease
• Type I diabetes mellitus
• Autoimmune thyroid disease

Fig. 1. Schematic of miRNA and mRNA integral analysis of primary biliary
cholangitis (PBC) CD4+ T cells. miRNA, microRNA; qRT-PCR, quantitative real-
time polymerase chain reaction; FC, fold change; FDR, false discovery rate; GSEA,
gene set enrichment analysis; DAVID, database for annotation visualisation and
integrated discovery.
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In vitro assay

Jurkat cells and HEK293T cells were used for in vitro assays. A luciferase assay
with a miRNA mimic or locked nucleic acid (LNA) inhibitor was performed to
identify miRNA targets. Transfection of plasmid vector and infection of lentiviral
vector were performed for functional analysis of miRNA and target genes. An anti-
CD3 antibody was used for T cell receptor (TCR) stimulation of cultured cells. Far-
nesylthiosalicylic acid (FTS) was used for Ras inhibition assay. Each phenotype of
treated cells was examined by qRT-PCR, Western blot, and enzyme-linked
immunosorbent assay (ELISA).

Statistical analysis

Data are shown as mean with standard deviation (SD) from the mean. The data of
two groups were analysed with Student’s t test. The data of groups greater than or
equal to three were analysed by Dunnett’s test or Tukey’s multiple comparisons
test. The value of p <0.05 was considered statistically significant.
Table 2. Extraction of candidate target genes using GSEA with created gene
sets.

Gene set FDR Predicted target
genes (n)

Candidate target
genes (n)

miR-181a <0.01 1,440 53
miR-181b <0.01 1,437 53
miR-374b <0.01 895 35
miR-425 <0.05 526 14

Each miRNA-target gene set was composed of miRNA and the corresponding
predicted target genes. GSEA-identified enriched target genes negatively corre-
lated with the four downregulated miRNAs (FDR <0.05). The expression of can-
didate target genes significantly differed between primary biliary cholangitis
(PBC) patients (n = 6) and healthy controls (n = 6) (p <0.05; fold change >1.5).
GSEA, gene set enrichment analysis; FDR, false discovery rate.
Results

miRNA profiles of CD4+ T cells from primary biliary cholangitis
patients

A total of 14 PBC patients and ten healthy controls (Table 1) were
assessed by the following studies (Fig. 1). All of the 14 PBC
patients were anti-mitochondrial antibody positive as shown by
a chemiluminescence enzyme immunoassay using Stacia
MEBLux test mitochondria M2 (Medical & Biological Laboratories
Co., Ltd., Nagoya, Japan).

In the miRNA microarray study, total RNAs of CD4+ T cells
from six PBC patients and six healthy controls were examined.
All samples fulfilled the following criteria (RNA integrity number
>8.0, A260/A280 ratio; 1.9–2.2). The expression levels of
16 miRNAs were found to differ significantly between PBC
patients and controls (p <0.05, fold change >1.2) (Table S1). Of
the 16 differentially expressed miRNAs, 15 were downregulated
and one was upregulated in PBC patients compared with those
in the control group (Fig. 2A and B). In the validation study using
qRT-PCR, total RNA of CD4+ T cells from 14 PBC patients and ten
miRNA
Regulation

(PBC/control)
Fold change
(PBC/control) p value

miR-181a Decreased -1.7 <0.01
miR-181b Decreased -1.3 <0.05
miR-361-5p Decreased -1.2 <0.05
miR-374b Decreased -1.3 <0.01
miR-425 Decreased -1.2 <0.01
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healthy controls (including the subjects assessed by microarray
study) was examined. Of the 16 differentially expressed miRNAs
on microarray analysis, five miRNAs (miR-181a, -181b, -361-5p,
-374b, and -425) were validated by qRT-PCR to be significantly
downregulated in PBC patients, compared with those in the
controls (Fig. 2C).

Enrichment analysis for miRNA and target genes

To identify the miRNA-target gene groups potentially involved in
PBC pathogenesis, a GSEA was performed. The numbers of
predicted target genes for miR-181a, -181b, -361-5p, -374b,
and -425 were 1,440, 1,437, 462, 895, and 526, respectively. Then,
five miRNA-predicted target gene sets were created by combining
each miRNA with corresponding predicted target genes. In mRNA
microarray studies for GSEA, 27,958 Entrez genes in CD4+ T cells
obtained from six PBC patients and six healthy controls were
assessed. Of the five validated miRNA-predicted target gene sets,
four miRNA-predicted target gene sets (miR-181a, -181b, -374b,
and -425) were found to be significantly enriched in PBC patients
(false discovery rate [FDR] <0.05; Table 2). From the four enriched
miRNA-predicted target gene sets, 74 candidate target genes
were extracted from predicted target genes (p <0.05; fold change
>1.5). The numbers of candidate target genes for each gene set of
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miR-181a, -181b, -374b, and -425 were 53, 53, 35, and 14
(including overlapping genes), respectively (Table 2).

Pathway analysis of candidate target genes

From the 74 candidate target genes, six pathways (TCR signalling
pathway, MAPK signalling pathway, allograft rejection, graft-
versus-host disease (GVHD), type I diabetes mellitus and
autoimmune thyroid disease) were identified from KEGG path-
way analysis by DAVID (p <0.05; Fig. 3A). In total, four identified
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miRNAs and five candidate target genes (IFN-c, IL-2, IL-10, N-RAS,
and MAP3K8) were mapped onto the TCR signalling pathway
using VisANT ver.1 (http://visant.bu.edu) (Fig. 3B) [32]. The
expression levels from all subjects of five candidate target genes
on the TCR signalling pathway in CD4+ T cells were validated by
qRT-PCR (p <0.05) (Fig. 3C).

Inflammatory cytokine regulation by N-Ras overexpressing Jurkat
cells

Overexpression of N-Ras was confirmed by qRT-PCR and Western
blot in Jurkat cells stably transfected with N-Ras expression
plasmid (Fig. 4A). Expressions of IL-2 and IFN-c were found to
be significantly increased in N-Ras-overexpressing Jurkat cells fol-
lowing anti-CD3 stimulation compared with those in mock con-
trol Jurkat cells by qRT-PCR (p <0.05; Fig. 4B). Supernatant IL-2
was found to be significantly increased in N-Ras-overexpressing
Jurkat cells following anti-CD3 stimulation compared with those
in mock control Jurkat cells by ELISA (p <0.05; Fig. 4C).

N-Ras regulation by the four enriched miRNAs

Bioinformatic analysis showed alignments of four enriched
miRNAs and their binding sites in the 30-UTR of N-Ras mRNA
(Fig. 5A). miR-425 had four binding sites in the 30-UTR of N-Ras
mRNA and was the most frequent miRNA among four enriched
miRNAs. To examine the binding between the 30-UTR of N-Ras
and the four enriched miRNAs, a luciferase reporter assay with
miRNA mimics was performed. A miR-425-mimic and a mixture
of all four miRNA mimics significantly decreased Luc-NRas-30UTR
(which contains the whole sequence of human N-Ras-30-UTR)
activity compared with that in the negative control (Fig. 5B). To
verify the specificity of the effect of miR-425 on the 30-UTR region
of N-Ras, experiments with mutated miR-425 mimic and
miR-425 antisense inhibitor were performed. The miR-425 mimic
significantly decreased luciferase activity of Luc-NRas-30-UTR
vector compared with the negative control and miR-425-mut
mimic (p <0.05, Fig. 5C). On the other hand, miR-425-mut mimic
did not change luciferase activity of Luc-NRas-30-UTR vector
compared with the negative control (Fig. 5C). Moreover, the
miR-425-inhibitor restored this decrease of luciferase activity of
Luc-NRas-30UTR by the miR-425-mimic (p <0.01, Fig. 5C). To ver-
ify the specificity of the effect of miR-425 on the miR-425 binding
site of N-Ras, experiments with Luc-NRas-miR425 binding site
vector (which contains tandemly lined up miR-425 binding site
sequences of human N-Ras 30-UTR) and Luc-mut-NRas-miR425
binding site vector (which contains tandemly lined up mutated
miR-425 binding site sequences of human N-Ras 30-UTR) were
performed. The luciferase activity of Luc-NRas-miR425 binding
site vector was significantly decreased by miR-425 mimic com-
pared with the negative control mimic (p <0.05, Fig. 5D). On the
other hand, luciferase activity of Luc-mut-NRas-miR425 binding
site vector was abrogated the decreasing effect of miR-425 mimic
(Fig. 5D).

A high expression of miR-425 was confirmed by qRT-PCR in
Jurkat cells stably infected with miR-425 lentiviral vector
(Fig. 5E). N-Ras mRNA and protein levels were measured in
miR-425-overexpressing Jurkat cells by qRT-PCR and Western
blot. The expression levels of N-Ras mRNA were significantly
decreased in miR-425-overexpressing Jurkat cells compared with
those in the control (p <0.05; Fig. 5F). Likewise, N-Ras protein
vol. 66 j 1223–1230
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levels were significantly decreased in miR-425-overexpressing
Jurkat cells compared with those in the control (p <0.05; Fig. 5G).

N-Ras suppression by miR-425 and farnesylthiosalicylic acid

In miR-425-overexpressing Jurkat cells, the expressions of IL-2
and IFN-c were lower than those in mock control Jurkat cells
(Fig. 6A). In fact, supernatant IL-2 levels were found to be signif-
icantly decreased in miR-425-overexpressing Jurkat cells follow-
ing anti-CD3 stimulation compared with those in mock control
Jurkat cells (p <0.05; Fig. 6B). FTS significantly suppressed IL-2
and IFN-c expression in CD3-stimulated Jurkat cells by inhibiting
N-Ras, as did miR-425 by suppressing N-Ras (p <0.05, Fig. 6C).
Likewise, suppressed IL-2 levels, measured by ELISA, were found
to be significant by a decrease in FTS-treated Jurkat cells follow-
ing anti-CD3 stimulation compared with those in mock control
Jurkat cells (p <0.05, Fig. 6D).
Discussion

The results of the present study demonstrated that the decreased
expression of four miRNAs (miR-181a, -181b, -374b, and -425) in
CD4+ T cells isolated from PBC patients may lead to increased
inflammatory cytokine production via the TCR signalling path-
way. In particular, miR-425 regulated TCR signalling to induce
inflammatory cytokines via N-Ras expression.

Notably, integral miRNA-mRNA analysis using GSEA visu-
alised molecular biological disorders that had occurred in CD4+

T cells of PBC. The individual study of miRNA or mRNA profiling
in PBC could not overlook the interactive reactions between
miRNA and its target genes [19,21,22]. Therefore, we investigated
miRNA and target gene expression in the pathogenesis of PBC by
integral analysis. On the other hand, integral analysis requires a
relatively large quantity of total RNA, as well as a high concentra-
tion and quality of total RNA. Unfortunately, it is currently impos-
sible to perform integral analyses in more specific T cell subsets
(e.g. Th1, Th17, and regulatory T cells) as these techniques
require greater numbers of cells than can be readily obtained
[33,34]. Needless to say, miRNA expression profiles are known
1228 Journal of Hepatology 2017
to differ between lymphocyte subsets [35,36]. Nevertheless, inte-
gral analysis of specific T cell subsets has not yet been reported,
and the present study is the first report to analyse integrally
and comprehensively miRNA-mRNA profiles in an inflammatory
disease.

To demonstrate the pathological role of miRNA and its target
genes in CD4+ T cells of PBC, we focused on N-Ras in the present
study because N-Ras was targeted by all four identified miRNAs
and was upstream of the TCR signalling pathway. Moreover, N-
Ras is known to play a pivotal role in T cell activation and
immunological reactions among the Ras family (N-Ras, H-Ras
and, K-Ras) [37–40]. Indeed, N-Ras was shown to be regulated
by miR-425 and affected cytokine production in T cells in the
present study. Thus, the restoration of decreased miR-425, lead-
ing to N-Ras inhibition, was expected to suppress inflammation
in PBC. Recently, Ras inhibitors have become the focus as poten-
tial immunosuppressors for inflammatory diseases [41–43]. The
present study firstly described PBC as an N-Ras-overexpressed
inflammatory disease. Additionally, N-Ras is reportedly a
senescence-associated molecule in the cholangiocyte of primary
sclerosing cholangitis and PBC [44]. Ras inhibition may improve
the disorders of cholangiocytes in PBC. Furthermore, the present
study has shown that the GVHD pathway and the allograft rejec-
tion pathway were upregulated in CD4+ T cells of PBC compared
to those of normal controls. PBC-like cholangitis sometimes
occurs in chronic GVHD [45]. Although cholangitis in chronic
GVHD is pathologically different from that in PBC [46], our path-
way analysis suggested that shared mechanisms underlie both
diseases to destruct cholangiocytes by CD4+ T cells. Interestingly,
Ras inhibitors are reported to prevent GVHD [47]. Thus, it is pos-
sible that Ras inhibitors may also prevent the destruction of
cholangiocytes by CD4+ T cells of PBC. Therefore, inhibition of
N-Ras seems to be an appropriate treatment option for PBC.

N-Ras inhibition by miR-425 is unique compared to other Ras
inhibitors. miR-425 specifically suppressed N-Ras translation
among the Ras family because sequences of H-Ras and K-Ras 30-
UTRs do not contain the miR-425-seed site as strongly. Almost
all Ras inhibitors target and suppress prenylations (mainly farne-
syl transferase) in the Ras activation cascade and affect the entire
Ras family [48]. Thus clinical trials showed that certain side
vol. 66 j 1223–1230
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effects (mainly diarrhoea) occurred in Ras inhibitor recipients
[49,50]. Therefore, immunosuppression via N-Ras inhibition by
the restoration of decreased miR-425 is expected to reduce side
effects of conventional Ras inhibitors. To establish the miR-425
treatment for PBC, we should identify miR-425 inducers in T cells.
Reportedly, oestrogen is a miR-425 inducer in breast cancer [51].
Therefore, we are trying to regulate miR-425 expression by
certain substrates. Unfortunately, we were unable to induce
miR-425 in Jurkat cells by oestrogen treatment (data not shown).
Further studies are required to establish a miR-425-dependent
therapy for PBC.

Finally, microarray study and target prediction suggest four
enriched miRNAs may regulate N-Ras concordantly. miR-181a,
-181b, and -374b seem to be mild regulators of N-Ras. In fact,
miR-181a modulates inflammatory cytokine production in T cells
[36], and miR-374b has been reported to regulate AKT1, included
in the TCR signaling pathway, in T cell lymphoma [52]. Thus,
miR-181a, -181b, and -374b possibly regulate inflammatory
cytokine production not only via N-Ras regulation, but also via
other target genes in CD4+ T cell of PBC.

In summary,we identifieddecreased levels ofmiRNAs thatmay
cause dysregulated inflammatory cytokine production via the
modulation of the TCR signalling pathway in CD4+ T cells isolated
from PBC patients. The findings of the present study may con-
tribute to the development of novel therapeutic options for PBC.
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