Department of Physiology (II)

Satoshi Kurihara, Professor Masato Konishi, Visiting Professor Yoichiro Kusakari, Lecturer Iwao Ohtsuki, Visiting Professor Norio Suda, Lecturer

General Summary

The main research topics of our department are the physiology of cardiac and skeletal muscle contraction and other related subjects.

Research Activities

Physiology of cardiac muscles

Alpha₁ adrenoceptor (α_1 -AR) signaling plays crucial roles in the regulation of physiological and pathophysiological cardiac cellular responses. We next investigated the subcellular localization of α_1 -AR subtypes (α_{1A} and α_{1B}) and distinct signaling pathways in native cardiac cells. We compared the functional effects of subtype-selective α_1 -AR stimulation on L-type Ca²⁺ current (I_{ca,L}). We provided the direct evidence that cardiac α_1 -AR signaling diverges at the level of α_1 -AR subtype and G-protein. The α_{1A} -AR and α_{1B} -AR signaling pathways couple with different G-proteins, $G_{q/11}$ and G_{o} , respectively and produce different functional outcomes (an increase and decrease of I_{CaL}). We investigated the relations among the uptake rate, content, release (Ca^{2+} -induced Ca^{2+} release [CICR]), and the leakage of Ca²⁺ in cardiac sarcoplasmic reticulum (SR). To modulate the Ca^{2+} uptake rate of SR, we used transgenic mice hearts that over-express sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA2a; SERCA-TG mice) or sarcolipin (SLN-TG mice), a SR-coupled protein to suppress Ca²⁺ uptake. We employed saponin-treated thin trabeculae to directly apply various solutions to SR. The Ca²⁺ remaining in the SR after various maneuvers modulating SR functions was released by caffeine (50 mM), and the released Ca²⁺ was measured with fluo-3. The Ca²⁺ uptake rate was estimated by measuring Ca²⁺ content in the SR after Ca²⁺ was loaded into the SR in the presence of ATP (4 mM) and various concentrations of Ca²⁺ for different periods. The Ca^{2+} leakage was estimated by measuring the Ca^{2+} remaining in the SR after it was washed with a solution containing EGTA for various durations (5 to 300 seconds) after Ca^{2+} loading. The CICR was estimated by measuring the Ca^{2+} remaining in the SR after CICR was induced by the application of solutions containing various concentrations of Ca^{2+} (pCa, 7.6-4.3) without ATP after Ca^{2+} loading. With a short Ca²⁺-loading time, the Ca²⁺ content was larger in SERCA-TG mice (113.8%) and smaller in SLN-TG mice (71.6%) than in control non-transgenic mice. At pCa 6.6, the Ca^{2+} content was significantly larger in SERCA-TG mice (199.0%) and smaller in SLN-TG mice (69.8%) than that in non-transgenic mice. The maximal Ca^{2+} content, CIC, and Ca²⁺ leakage in SERCA-TG and SLN-TG mice did not differ from those in non-transgenic mice. Thus, Ca^{2+} leakage is independent of the rate of Ca^{2+} uptake in the SR, and the altered Ca^{2+} leakage in heart failure is mainly due to the dysfunction

of ryandine receptors.

Skinned cardiac fibers exhibit spontaneous oscillatory contraction (SPOC) over a broad range of intermediate activating conditions (Ca-SPOC) or in the coexistence of ADP and Pi under relaxing conditions (ADP-SPOC). We recently reported that the period of sarcomeric oscillations during SPOC correlates with that of the heartbeat in various animal species. These findings suggest that the intrinsic auto-oscillatory property of sarcomeres (myofibrils) may contribute to myocardial beating *in vivo*.

We investigated the possible involvement of troponin in the length effect (leftward shift of pCa-tension relation at longer muscle length) in cardiac muscle. We used skinned porcine left ventricular muscle, and cardiac troponin was replaced with fast skeletal troponin (sTn; prepared from rabbit psoas muscle). The replacement of cardiac Tn with sTn markedly attenuated length-dependent activation. We also measured the rate constant of force re-development (k_{tr}) and found that k_{tr} increased at submaximal activation upon sTn reconstitution, suggesting a reduction in the fraction of detached cross-bridges that can potentially produce active force upon attachment to actin.

Mechanism of lower Ca²⁺ sensitivity observed in immobilized skeletal muscle

Immobilization of rat hind limb causes a marked reduction in the wet weight of soleus muscle. We found that in immobilized fibers, Ca^{2+} sensitivity was reduced with a reduction in maximal Ca^{2+} -activated force. To clarify the molecular mechanism of these mechanical changes, we measured interfilament lattice spacing with the small-angle X-ray diffraction method. The interfilament lattice spacing was expanded in immobilized fibers, which could explain the lower maximal tension and the lower Ca^{2+} sensitivity of immobilized skeletal muscle fibers.

L-type Ca²⁺channel in secondary hyperparathyroidism

We investigated the effect of the extracellular Ca^{2+} concentration of the cell-culture medium on the depolarization-induced Ca^{2+} transients (with 150 mM K⁺) in parathyroid cells isolated from patients with secondary hyperparathyroidism. The peak of the Ca^{2+} transients was dependent upon the Ca^{2+} concentration in the culture medium. Thus, the expression of the voltage-dependent Ca^{2+} channel is influenced by the Ca^{2+} concentration around the parathyroid cells.

Publications

Ishikawa T, Mochizuki S, Kurihara S. Crossbridge-dependent change in Ca²⁺ sensitivity is involved in the negative inotropic effect of nifedipine in aequorin-injected ferret ventricular muscles. *Circ J* 2006; **70**: 489–94.

Fukuda N, Udaka J, Kurihara S. Research on molecular mechanisms of active force reduction and easy fatigability in atrophied skeletal muscle with the aim of developing new rehabilitation exercises(in Japanese). *Desanto Sports Kaga-ku* 2006; **27(Suppl):** 164–70.

Sasaki D¹, Fukuda N, Ishiwata S¹ (¹Waseda Univ).

Myocardial sarcomeres spontaneously oscillate with the period of heartbeat under physiological conditions. *Biochem Biophys Res Commun* 2006; **343:** 1146-52.

Kusakari Y, Hongo K, Kawai M, Konishi M, Kurihara S. Use of the Ca-shortening curve to estimate the myofilament responsiveness to Ca²⁺ in tetanized rat ventricular myocytes. *J Physiol Sci* 2006; **56:** 219-26.

Hirano Ś, Kusakari Y, O-Uchi J, Morimoto S, Kawai M, Hongo K, Kurihara S. Intracellular mechanism of the negative inotropic effect induced by α_1 -adrenoceptor stimulation in mouse myocardium. J Physiol Sci 2006; **56:** 297-304. Mizuno J¹, Otsuji M¹, Takeda K¹, Yamada Y¹, Arita H¹, Hanaoka K¹, Hirano S¹, Kusakari Y¹, Kurihara S¹ (¹Dept Anesthesiol, Faculty Med, **Univ Tokyo).** Superiror logistic model for decay of Ca²⁺ transient and isometric relaxation force curve in rabbit and mouse papillary muscles. *Int Heart J* 2007; **48:** 215–32.