Research Center for Medical Sciences Core Research Facilities for Basic Science (Division of Molecular Cell Biology)

Yoshinobu Manome, Professor and Director Takeo Iwanoto, Professor Keiichi Ikeda, Assistant Professor Akito Tsubota, Professor Toshiaki Tachibana, Professor Kouki Fujioka, Assistant Professor

General Summary

The Core Research Facilities were reorganized on April 1, 2014, and its name was changed to Core Research Facilities for Basic Sciences (Division of Molecular Cell Biology). The mission of the facilities is the facilitation of research in the university. Two systems are constituted for the use of the facilities for Basic Sciences (Division of Molecular Cell Biology).

Research Activities

Cell membrane perforation with photosensitizer and a brush-shaped soft-polymer sheet and apoptosis of colon and lung cancer cells by microRNA-203 and Puma expression Transduction of foreign molecules into cells is an important technique for investigating the functions of corresponding molecules or targets or both. Recently, a mass-producible nanoprinting perforator was devised to enable large-scale, high-performance drugs or nucleic acids to be transferred into cells without causing damage. Therefore, we investigated the effects of this perforator on a malignant glioma cell line. Photosensitization transduced fluorescein isothiocyanate-conjugated albumin into cells. The trypan blue inclusion test demonstrated membrane disintegration by the procedure, and scanning electron microscopy disclosed perforation of the cell membrane. A local oxidation reaction during nanoprinting caused reversible membrane perforation; therefore, the specific printing system might be convenient for the transduction of foreign molecules into malignant glioma cells.

The relationship between microRNA-203 (miR-203) and the p53 upregulated modulator of apoptosis (Puma) was investigated in colon and lung-cancer cell lines. Although p53 downregulation decreased both miR-203 and Puma expression, miR-203 overexpression increased Puma expression. These findings suggest that activated p53 increases both miR-203 and Puma expression remains elevated in cells with miR-203 overexpression in the presence of p53 downregulation. Our data suggest that p53 increases Puma expression directly and may also do so through miR-203. This functional study revealed that miR-203 overexpression induces apoptosis and inhibits cell invasiveness.

Chimeric model mice of hepatitis infection with human hepatocytes, intrahepatic cellular localization of ATP7B, gene mutation in the treatment of chronic hepatitis C virus infection, comprehensive gene expression profiling analysis of microRNA/messenger RNA, and gene delivery and immunomodulatory effects of plasmid DNA associated with branched amphiphilic peptide capsules

We have established the human hepatocyte chimeric mouse as an animal model for investigating hepatitis B or C virus infection and are aggressively researching the efficacy of novel antiviral agents, the infection mechanism, and the ultrastructural alteration of intrahepatocellular organelles after viral eradication.

In collaboration with the University of Barcelona (Spain), we are investigating the protein ATPase copper transporting beta (ATP7B), which balances the copper level by excreting excess copper into bile and plasma, because the exact localization of ATP7B in the hepatocyte remains to be determined.

We are investigating the association of single nucleotide polymorphisms of the genes with the serum drug concentration, treatment response, and liver damage induced by directly acting antiviral agents in the treatment of hepatitis C virus infection. Resistance-associated variants are also being investigated in detail.

We have found the novel interaction between microRNA and messenger RNA in the replication and life cycle of hepatitis B virus and investigated the association of the serum microRNA expression level with treatment outcomes and prognosis in patients with hepatocellular carcinoma who were treated with transcatheter arterial chemoembolisation and radiofrequency ablation. In addition we have reported on a new class of branched amphiphilic peptides associated with double-stranded DNA and promoted *in vitro* transfection of eukaryotic cells, yielding high transfection rates and minimal cytotoxicity and representing a new and promising nonviral DNA/gene delivery approach for DNA vaccines.

Matrix-remodeling response of human periodontal tissue cells toward fibrosis upon nicotine exposure

Fibrosis is frequently observed in the gingiva of smokers. However, the mechanisms by which smoking results in pathological changes in periodontal tissue and lead to fibrosis are not entirely clear. Our former report showed that type I collagen synthesis is promoted by nicotine via CCN family protein 2 in human periodontal tissue cells. Here, we evaluated other aspects of nicotine function from the viewpoint of extracellular matrix remodeling. Human gingival fibroblasts (n = 4) and periodontal ligament cells (n = 3) were isolated. The cells were treated with various concentrations of nicotine for 12 to 48 hours. Modulators of matrix remodeling were measured with enzyme-linked immunosorbent assays. Cell migration and morphology were also evaluated. After treatment with 1 µg/ml nicotine, significant increases (p < 0.05) were observed of tissue inhibitor of metalloproteinase 1 and transforming growth factor β 1 production in both cell lysates and supernatants and of matrix metalloproteinase 1 production in cell lysates. Cell migration was significantly inhibited (p < 0.005) by nicotine in a time-dependent manner. Electron microscopic analysis revealed vacuoles in nicotine-treated cells. These results indicate that nicotine impairs fibroblast motility, induces cellular degenerative changes, and alters the extracellular matrix remodeling systems of periodontal cells. Induction of matrix remodeling molecules, combined with type I collagen accumulation, may account for the molecular mechanism of nicotine-induced periodontal fibrosis.

Control of insulin secretion by urocortin III under hyperglycemic condition

Insulin secretion from pancreatic β cells is reported to be disturbed under hyperglycemic conditions. A recent study has found that release of urocortin III, a specific antagonist of corticotropin-releasing factor receptor type 2, both stimulates insulin release and is stimulated by elevation of extracellular glucose. Therefore, the effect of urocortin III at higher glucose levels on insulin release was investigated with the pancreatic β cells of MIN6 mice. The addition of urocortin III (10⁻⁷ M) resulted in a gradual increase of insulin release but in a decrease in a culture medium with 90 mM glucose. We will further investigate the mechanism of urocortin III–induced insulin release under such hyperglycemic conditions.

Development of an in vitro brain model for nano-brain toxicology assay

Recent technical innovations have allowed various nanomaterials to be mass-produced. Although nanomaterials are used for daily-use materials, such as foods and cosmetics, because of improved quality, nanomaterials are still being investigated for their safety. Recently, we have investigated the effect of nanoparticles on several brain cells. This year, we investigated the penetration mechanism of nanoparticles into the blood brain barrier using endothelial cells of capillary vessel. Our data showed that the cell index (electrical resistance value) of endothelial cells was decreased with the addition of nanoparticles, although the observation images of the cells were apparently unaffected. This result suggests that the barrier function of endothelial cells is affected by the nanoparticles and allows the particles to penetrate. Because the cell index seems to have higher sensitivity than does the observation of cell images, we will use the index to screen for the penetration of particles.

Publications

Suzuki Y, Takahashi-Fujigasaki J (Tokyo Metropol Inst Gerontol), Akasaki Y, Matsushima S, Mori R, Karaglozov K, Joki T, Ikeuchi S, Ikegami M, Manome Y, Murayama Y. BRAF V600E-mutated diffuse glioma in an adult patient: a case report and review. Brain Tumor Pathol. 2016; 33: 40-9.

Suzuki Y, Watanabe M, Murayama Y, Karagiozov K, Manome Y, Ohashi H. Usefulness of the behavior of fibroblast attachment to coils in thermoreversible gelation polymer for aneurysmal coil. *Transl Med (Sunnyvale).* 2016; **6:** 167.

Ikeda K, Tachibana T, Suzuki Y, Fujioka K, Takeyama H, Manome Y. Abnormal number cell division of human thyroid anaplastic carcinoma cell line, SW 1736. *Data Brief.* 2015; **5**: 396-8.

Tachibana T, Suzuki Y, Fujioka K, Ikeda K, Inoue Y (Showa Univ Sch Med), Tada Y (Tohoku Chemical Co., Ltd.), Saito TK (Akita **Prefect Univ), Manome Y.** Cell membrane perforation with photosensitizer and a brush-shaped soft-polymer sheet using a malignant glioma cell line. *Anticancer Res.* 2015; **35:** 6069-74.

Funamizu N, Lacy CR (Howard Univ Sch Med), Kamada M, Yanaga K, Manome Y. MicroRNA-203 induces apoptosis by upregulating Puma expression in colon and lung cancer cells. Int J Oncol. 2015; **47:** 1981-8.

Kondo C (Nippon Med Sch), Atsukawa M, Tsubota A, Shimada N, Abe H, Aizawa Y. Evaluation of factors associated with relapse in telaprevir-based triple therapy for chronic hepatitis C. J Postgrad Med. 2016; 62: 20-5.

Nagano T, Seki N, Tomita Y, Sugita T, Aida Y, Itagaki M, Sutoh S, Abe H, Tsubota A, Aizawa Y. Impact of chronic hepatitis C virus genotype 1b infection on triglyceride concentration in serum lipoprotein fractions. Int J Mol Sci. 2015; 16: Atsukawa M¹, Tsubota A, Shimada N², Yoshizawa K, Abe H, Asano T³, Ohkubo Y⁴, Araki M ⁵, Ikegami T⁶, Okubo T¹, Kondo C¹, Osada Y⁷, Nakatsuka K¹, Chuganji Y³, Matsuzaki Y⁶, Iwakiri K¹, Aizawa Y (¹Nippon Med Sch, ²Chiba Tokushukai Hosp, ³Tokyo Metropol Bokutoh Hosp, ⁴Saiseikai Yokohamashi Tobu Hosp, ⁵Ibaraki Cent Hosp, ⁶Tokyo Med Univ, ⁷Hakujikai Memorial Hosp). Effect of native vitamin D3 supplementation on refractory chronic hepatictis C patients in simeprevir with pegylated interferon/ribavirin. *Hepatol Res.* 2016; **46:** 450–8.

Atsukawa M¹, Tsubota A, Shimada N², Yoshizawa K³, Abe H, Asano T⁴, Ohkubo Y⁵, Araki M⁶, Ikegami T⁷, Kondo C¹, Itokawa N¹, Nakagawa A¹, Arai T, Matsushita Y¹, Nakatsuka K¹, Furihata T⁶, Chuganji Y⁴, Matsuzaki Y⁷, Aizawa Y, Iwakiri K¹ (¹Nippon Med Sch, ²Chiba Tokushukai Hosp, ³Machida Municipal Hosp, ⁴Tokyo Metropol Bokutoh Hosp, ⁵Saiseikai Yokohamashi Tobu Hosp, ⁶Ibaraki Cent Hosp, ⁷Tokyo Med Univ ⁸Chiba Univ). Influencing factors on serum 25-hydroxyvitamin D3 levels in Japanese chronic hepatitis C patients. *BMC Infect Dis.* 2015; **15**: 344.

Furihata T^I, Fu Z^I, Suzuki Y^I, Matsumoto S^I, Morio H^I, Tsubota A, Matsumoto S^I, Chiba K^I ('Chiba Univ). Differential inhibition features of direct-acting anti-hepatitis C virus agents against human organic anion transporting polypeptide 2B1. *Int J Antimicrob Agents.* 2015; **46:** 381-8.

Arai T¹, Atsukawa M¹, Tsubota A, Kondo C¹, Shimada N², Abe H, Itokawa N¹, Nakagawa A¹, Okubo T¹, Aizawa Y, Iwakiri K¹ ('Nippon Med Sch, ²Chiba Tokushukai Hosp). Vitamin D-related gene polymerphisms do not influence the outcome and serum vitamin D level in pegylated interferon/ribavirin therapy combined with protease inhibitor for patients with genotype 1b chronic hepatitis C. J Med Virol. 2015; **87**: 1904-12.

Ishiguro H, Abe H, Seki N, Sugita T, Aida Y, Itagaki M, Sutoh S, Shimada N, Furihata T, Tsubota A, Aizawa Y. Interferon- λ 3 polymorphisms in pegylated-interferon- α plus ribavirin therapy for genotype-2 chronic hepatitis C. World J Gastroenterol. 2015; **21**: 3904-11.

Kondo C¹, Atsukawa M¹, Tsubota A, Shimada N², Abe H, Itokawa N¹, Nakagawa A¹, Fukuda T¹, Matsushita Y¹, Nakatsuka K¹, Kawamoto C¹, Iwakiri K¹, Aizawa Y, Sakamoto C¹ (¹Nippon *Med Sch,* ²*Shinmatsudo Cent Gen Hosp).* Safety and efficacy of partial splenic embolization in telaprevir-based triple therapy for chronic hepatitis C. *Intern Med.* 2015; **54:** 119-26.

Abe H, Tsubota A, Shimada N¹, Atsukawa M², Kato K¹, Takaguchi K³, Asano T⁴, Chuganji Y⁴, Sakamoto C², Toyoda H⁶, Kumada T⁶, Ide T⁶, Sata M⁶, Aizawa Y (¹Shinmatsudo Cent Gen Hosp, ²Nippon Med Sch, ³Kagawa Prefect Cent Hosp, ⁴Tokyo Metropol Bokutoh Hosp, ⁶Ogaki Municipal Hosp, ⁶Kurume Univ Sch Med). Factors associated with sustained virological response in 24-week telaprevir-based triple therapy for chronic hepatitis C genotype 1b patients with the IL28B minor genotype. Hepatol Res. 2015; **45**: 387-96.

Mafune A, Iwamoto T, Tsutsumi Y, Nakashima A, Yamamoto I, Yokoyama K, Yokoo T, Urashima M. Associations among serum trimethylamine-N-oxide (TMAO) levels, kidney function and infarcted coronary artery number in patients undergoing cardiovascular surgery: a cross-sectional study. *Clin Exp Nephrol.* 2016; **20:** 731-9. Epub 2015 Dec 16.

Nagayoshi Y¹, Kumagae K¹, Mori K¹, Tashiro K¹, Nakamura A¹, Fujino ¹, Hiromasa Y¹, Iwamoto T, Kuhara S¹, Ohshima T², Doi K¹ ('Kyushu Univ, ²Osaka Inst Tech). Physiological properties and genome structure of the hyperthermophilic filamentous phage φOH3 which infects thermus thermophilus HB8. *Front Microbiol.* 2016; **7:** 50.

Tajima A, Murai N, Murakami Y, Iwamoto T, Migita T (Cancer Chemother Ctr Jpn Found Cancer Res), Matsufuji S. Polyamine regulating protein antizyme binds to ATP citrate lyase to accelerate acetyl-CoA production in cancer cells. Biochem Biophys Res Commun. 2016; 471: 646-51.

Ohyama A¹, Nikaido T², Tachibana T, Tominaga N¹, Toyomura J¹, Kimura E², Nakahara T¹, Yasuda M, Ishikawa H¹ ('Nippon Dent Univ, ²Kosei Hosp). Establishment and characterization of a cell line designated Nur-1 derived from human endometrioid adenocarcinoma of uterine corps. *Hum Cell.* 2015; **28**: 100-7.

Takeuchi-Igarashi H, Kubota S¹, Tachibana T, Murakashi E², Takigawa M¹, Okabe M, Numabe Y² ('Okayama Univ Grad Sch Med, ²Nippon Dent Univ). Matrix remodeling response of human periodontal tissue cells toward fibrosis upon micotine exposure. Odontology. 2016; 104: 35-43.