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DEVELOPMENT OF THE REVERSAL DRUG FOR THE ANTICANCER
DRUG-RESISTANT CELLS, AND TARGET CHEMOTHERAPY

Tadashi AsaKURA

Radioisotope Research Facilities, Research Center for Medical Sciences, The Jikei University School of Medicine

A conjugate of doxorubicin (DXR) with bovine serum albumin (BSA-DXR), which reversed multidrug
resistance (MDR), exhibited potent cytotoxicity with the degraded active adducts with a molecular weight of
approximately 2 to 3 kDa of BSA-DXR by lysosomal breakdown. Moreover, DXR conjugated to glutathione
(GSH-DXR) with rapid intracellular accumulation without efflux improved the cytotoxicity against MDR
cells. The GSH-DXR exhibited potent cytotoxicity against both DXR—sensitive cells and DXR-resistant
cells, and the treatment with GSH-DXR caused cytochrome c to be released from mitochondria to the cytosol
following potent activation of caspase 3 and caspase 9 by typical DNA fragmentation. This apoptosis was
regulated by the c—Jun N-terminal kinase (JNK)-signaling pathway. The glutathione S—transferase (GST)-
placental (P) type of GST isozyme was expressed in MDR cells, and active GST-P suppressed the INK-
signaling pathway by binding to JNK. Therefore, inhibition of GST-P activity by GSH-DXR induced
apoptosis through liberation of the INK-signaling pathway. To study the efficacy of a CD147-targeting agent
on CD147-expressing carcinoma cells, we investigated the effect of GSH-DXR encapsulated in anti-CD147
antibody—labeled polymeric micelles (aCD147ab—micelles) in terms of specific accumulation and cytotoxicity
in CD147-expressing human carcinoma cells. Specific accumulation of the aCD147ab—micelles in the
CD147-expressing cells was observed. The GSH-DXR encapsulated in aCD147ab—-micelles expressed
specific cytotoxicity against these carcinoma cells. The target chemotherapy of GSH-DXR encapsulated in
aCD147ab—micelles on CD147—-expressing carcinoma cells was suggested to be effective. However,
proteasome inhibitor has highly anticipated efficacy as an anticancer drug. We established proteasome
inhibitor-resistant cancer cells that acquired invasiveness and induced epithelial-mesenchymal transition
(EMT). In these cells up-regulation of zinc finger E-box—binding homeobox 1 (ZEB1) was induced via
suppression of the micro RNA (miR)-200 family following suppression of E—cadherin, and the miR-200
family was placed upstream of ZEBL1 to regulate the expression.

(Tokyo Jikeikai Medical Journal 2016;131:1-18)

Key words : multidrug resistance, glutathione S—transferase—placental, c-Jun N-terminal kinase, apoptosis,
proteasome inhibitor, epithelial-mesenchymal transition, miRNA
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Fig.1. Cytotoxic effect of bovine serum albumin (BSA)-
conjugated doxorubicine (DXR) (BSA-DXR) at the
equivalent concentration of DXR on AH66 parent
(DXR-sensitive) cell line (AH66P) and AH66 DXR-
resistant cell line (AH66DR) cells examined using
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazorium
bromide (MTT) assay in terms of percentage of viable
cells as compared with that of the control.

AH66P; A : DXR, O : BSA-DXR
AH66DR; X : DXR, A : BSA-DXR, @ : BSA-DXR +
verapamil (P-glycoprotein inhibitor)
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Fig.2. Estimation of molecular weight of the internalized DXR

conjugate in the subcellular fraction after 24 hours
treatment with BSA-DXR.
After 24 hours of treatment of both AH66P and AH66DR
cells with BSA-DXR conjugate, molecular weight
distribution of DXR compounds in secondary lysosomal,
cytosolic, nuclear and mitochondrial fractions was
estimated by high—performance liquid chromatography
gel filtration (G3000SW column)'?. Vo: void volume;
240k: elution of 240kD polypeptide; 66k: elution of 66kD
polypeptide; 13k: elution of 13kD polypeptide; Try:
elution of trypsine; DXR: elution of DXR.
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Fig.3. Cytotoxicity of DXR—peptide conjugates against AH66P

and AH66DR cells examined with MTT assay in terms of
the percentage of viable cells as compared with that of the
control.
X : DXR; A :BSA-DXR; A : glycyl-glycyl-glycine
(GGG)-conjugated DXR (GGG-DXR); @ : glutathione
(GSH)-conjugated DXR (GSH-DXR), O : 7 -glutamyl-
alanyl-glycine (EAG)-conjugated DXR (EAG-DXR),
O : 7 -glutamyl-seryl-glycine (ESG)-conjugated DXR
(ESG-DXR)™.

Table 1. The effect of verapamil on 50% growth—inhibitory concentration values for peptide-conjugated doxorubicin and the drug

accumulation rates in AH66P and AH66DR cells

GIC50 values (nM)

Drug accumulation rate (%)

AH66P AH66DR AH66P AH66DR
Drugs -VPL -VPL +VPL -VPL -VPL +VPL
DXR 600 32,000 900 17.1 2.5 14.3
+90 =+ 15,000 + 190 +2.0 +0.8 +23
BSA-DXR 30 600 40 11.3 9.7 12.1
+4.0 + 90 + 15 +1.8 +0.7 +15
GGG-DXR 500 20,000 700 16.9 3.4 13.9
+70 =+ 5,000 +210 +1.9 +1.1 +1.3
GSH-DXR 3.5 80 16 15.0 13.4 14.0
+1.1 + 16 +4 +0.9 +1.6 +1.1
EAG-DXR 7.8 240 80 14.2 13.3 14.4
+1.5 +40 + 10 +2.6 +2.1 +2.0
ESG-DXR 10.0 300 90 13.9 13.1 14.1
+2.2 + 50 +12 +3.0 +1.9 +1.7

Incubation was performed in the presence or absence of 5 1 M verapamil (VPL). The 50% growth-inhibitory concentration (GIC50)
values are expressed as equivalent concentrations of doxorubicin (DXR). Results are means £ S.D. (4 or 5 independent experiments).
The drug accumulation rate was expressed as intracellular DXR relative to DXR added to the medium during 24 hour of incubation.
Abbreviations: AH66P, AH66 parent (DXR-sensitive) cell line; AH66DR, AH66 DXR-resistant cell line; BSA-DXR, bovine serum
albumin-conjugated DXR; EAG-DXR, 7 —-glutamyl-alanyl-glycine-conjugated DXR; ESG-DXR, 7 —glutamyl-seryl-glycine—
conjugated DXR; GGG-DXR, glycyl-glycyl-glycine—conjugated DXR; GSH-DXR, glutathione—conjugated DXR.



A. DNA fragmentation B. Caspase-3 activity
Lane Treatment Caspase-3 activity
(pmol/min/mg)
1: Non-treatment 59
2: 3 pM DXR 72.6
3:3pM DXR + 1 pM DEVDal 15.1
4:3puM DXR + 5 pM DEVDal 78
5:3pM DXR + 5 pM YVADal 51.9
6:0.1pM GSH-DXR 1499
7:0.1pM GSH-DXR + 1 pM DEVDal 23.3
8:0.1pM GSH-DXR+5pM DEVDal g1
9:0.1pM GSH-DXR+5puM YVADal 974

Fig.4. Induction of DNA fragmentation (A) and caspase-3 activation (B) by treatment of AH66P cells with DXR and GSH-DXR.
The continuous treatment of the cells with 3 ..M DXR or 0.1 © M GSH-DXR in the presence or absence of acetyl-aspartyl-
glutamyl-varyl-aspartyl-aldehyde (DEVDal, caspase-3 inhibitor) or acetyl-tyrosyl-varyl-alanyl-aspartyl-aldehyde (YVADal,
caspase-1 inhibitor) for 24 hours'?.
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Fig.5. GSH-DXR (0.3 1t M) induced activation of caspase—3 and caspase—9, fragmentation of DNA, and release of cytochrome ¢ from
the mitochondria to cytosol in AH66 cells. Caspase—3 (A) and caspase—9 (B) activation, DNA fragmentation (C), and cytochrome
c release (D) in AH66 cells treated with 0.3 1M GSH-DXR for various periods of time were measured. DNA fragmentation
in AH66 cells co—treated with 0.3 1M GSH-DXR and acetyl-leucyl-glutamyl-histidyl-aspartyl-aldehyde (LEHD-aldehyde)
(20 1t M), caspase—9 inhibitor was also measured. After treatment of AH66 cells with 0.3 1M GSH-DXR for various periods
of time, the fragmented DNA was extracted with 1% Triton X-100 and separated by 2% agarose gel electrophoresis. The 100—
base—pair DNA ladder marker was used as the standard DNA fragment. Caspase—3 and caspase—9 activities in the same extracts
were determined with acetyl-aspartyl-glutamyl-varyl-aspartyl- & —(4-methyl-coumaryl-7-amide) (DEVD-MCA) and acetyl-
leucyl-glutamyl-histidyl—-aspartyl- & —(4-methyl-coumaryl-7-amide) (LEHD-MCA) as substrates. Results are means = SD (3
independent experiments). Cytochrome ¢ in both the mitochondrial and cytosolic fractions was detected by Western blot analysis
using an anti-cytochrome c antibody. The amount of applied sample was 100 1 g of protein in each lane®”.
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Fig.6. Time course of glutathione S—transferase-P (GST-P) messenger (m) RNA (A) and its protein expression (B), caspase-3 and
GST activity (C), and DNA fragmentation (D) after treatment with GSH-DXR. After treatment of AH66P cells with 0.1 M
GSH-DXR for various times, GST-P mRNA (Northern blot) and its protein (Western blot), caspase—3 activity (DEVD-MCA
as a substrate), GST activity (1-chloro—-2,4-dinitrobenzene (CDNB) and GSH as substrates), and DNA fragmentation (agarose
gel electrophoresis) were measured as described previously (33—-35). Relative amounts of GST—P protein were measured in a
densitometer and compared with the nontreated control. Results are means + SD (3 independent experiments)*.
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Fig.7. (A) Expression of transfected wild—type GST-P and site—directedly mutated GST-P (W38H: site directed mutant of 38th
tryptophane to histidine, and C47S: site directed mutant of 47th cysteine to serine) in AH66 cells. (B) Cytotoxicities of DXR
and GSH-DXR, and each 50% inhibitory concentration (IC50) value in AH66 cells transfected with GST-P/wild, GST-P/
W38H, and GST-P/C47S complementary (c) DNA. The expressed protein was recognized by an anti-GST-P antibody. The
1C50 values are means + SD (3 independent experiments using different strains)®.
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(B) Effect of JNK-DN expressed in AH66 cells
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Fig.8. The effects of SP600125 (an inhibitor of c-Jun N-terminal kinase [JNK] activity) (A) and JNK-dominant negative (JNK-DN)
(B) on GSH-DXR-induced apoptosis were measured. (A) After co-treatment of AH66 cells with 0.3 1M GSH-DXR and
5 ;M SP600125 for 18 hours, the fragmented DNA was extracted with 1% Triton X-100 and separated by 2% agarose gel
electrophoresis. The 100-base—pair DNA ladder was used as the standard DNA fragment. Caspase—3 and caspase—9 activities in
the same extracts were determined with DEVD-MCA and LEHD-MCA as substrates. Results are means == SD (3 independent
experiments). (B) After treatment of AH66 cells expressed with Flag-INK/wild and Flag-JNK/K55A (site directed mutant
of 55th lysine to alanine, INK-DN) with 0.3 1« M GSH-DXR for 18 hours, activated JNK (phosphorylated-JNK [Pi-INK]),
JNK activity (phosphorylation of c-Jun [Pi-c-Jun]), and caspase—3 activity were measured. Expressed Flag-tagged JNK was
determined with Western blot and anti-Flag antibodies. The Pi—JNK and Pi—c—-Jun were detected with anti-phospho-JNK (183T
and 185Y) and anti-phospho-c-Jun (63S) antibodies, respectively*®:
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Fig.9. Activation of INK (Pi-JNK and Pi-c-Jun) in AH66 cells expressed with Flag-GST-P/wild, Flag-GST-P/W38H, Flag-GST-P/
C47S, T7-GST-P/AC(194-209) (C—terminal deletion), and T7-GST-P/R201A (site directed mutant of 201th arginine to
alanine). (A) Activation of JNK in AH66 cells expressed with Flag-GST P1-1/wild, Flag-GST P1-1/W38H, and Flag-GST
P1-1/C47S by treatment with GSH-DXR. Activation of JNK (Pi-c-Jun and Pi-JNK), binding of expressed Flag-GST P1-1/
wild, Flag-GST P1-1/W38H, and Flag-GST P1-1/C47S to the JNK molecule and activity of caspase—3 in AH66 transfectant
cells treated with 0.3 © M GSH-DXR for 18 hours were measured. Pi-JNK, Pi-c-Jun, endogenous GST P1-1 and expressed
Flag-GST P1-1/wild, and Flag-GST P1-1/W38H and Flag-GST P1-1/C47S bound to the JNK molecule were analyzed by
Western blot analysis using anti-phospho—JNK (183T and 185Y), anti-phospho—c—Jun (63S), and anti-GST—-P antibodies,
respectively. Caspase-3 activity was determined using DEVD-MCA as a substrate. (B) Effects of C—terminal deletion mutant of
GST P1-1 (T7-GST P1-1/AC [194-209]) and C—-terminal mutated GST P1-1 (T7-GST P1-1/R201A) on binding and activity
of JNK. The JNK activity was expressed as Pi-c-Jun. Extracts from AH66 cells irradiated with ultraviolet light were used as
the enzyme source. JNK (including the active form) purified by affinity precipitation (binding to c-Jun fusion resin) was reacted
with 100 . M ATP in the presence or absence of T7-GST P1-1/wild or the mutants. After the resin was washed, Pi-c-Jun, Pi—
JNK (active form of JNK), JNK and T7-GST P1-1 were measured by Western blot analysis using anti-phospho-c-Jun (63S),
anti-phospho—-JNK (183T and 185Y), and anti—T7 antibodies, respectively. (C) GST activity in T7-tagged GST P1-1/wild and
its mutants (T7-GST P1-1/W38H and T7-GST P1-1/C47S). The activity was determined with 1 mM GSH and 1 mM CDNB
as substrates. T7-GST P1-1/wild, T7-tagged wild type GST P1-1; T7-GST P1-1/A C(194-209), C—terminal deletion mutant;
T7-GST P1-1/R201A, site-directed mutation of the C—terminal region; T7-GST P1-1/W38H and T7-GST P1-1/C47S, site—
directed mutation of the active center. Results are means + SD (3 independent experiments)*®.
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itochondria

I DNA fragmentation I

Fig.10. Proposed model for apoptosis induction by GSH-
DXR. GSH-DXR induced activation of JNK according
to JNK phosphorylation and GST-P inhibition. Bcl-
2 phosphorylated by active JNK was dissociated from
mitochondrial membrane, and cytochrome ¢ was
released through the produced pore by the dissociation
from mitochondria to cytosol. DNA was fragmented by
following activation of caspase—9 and caspase—3.
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Fig.11. (A) Preparation of anti-CD147 antibody-labeling polymeric micelles (aCD147ab-micelles) encapsulated GSH-DXR.
Star sign: Fluorescent Dye GFP. (B) DXR concentration in blood after intravenous injection. @ : polymeric micelles, O :
liposomes, A : DXR. "“C-labeled polymeric micelles or “C-labeled DXR was injected into the tail veins of female mice (7
weeks old) at a volume of 0.1 ml/10 g body weight. The dose was either 10 mg/kg for ADR or 10 mg of the total amount of
both physically entrapped ADR (intact) and the dimer/kg for the polymeric micelles. After defined time periods (15 minutes,
1, 4, 24, and 48 hours), mice were anesthetized with diethylether. Blood samples were collected from the right axillary artery.
Total radioactivity in blood was calculated by assuming that the total blood volume was 2.18 ml/25 g of body weight.
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Fig.12. Expression of CD147 in human normal tissues (brain, heart, liver, lung, kidney, placenta, pancreas, ovary, testis, breast, colon,
prostate, muscle, skin, spinal cord, skin, spinal cord lymph node, and spleen) and cancer cells (human alveolar basal epithelial
cell A549 and human squamous carcinoma A431) (A), and several cancer cell lines (1: A431; 2: human ovarian carcinoma

A2780; 3: human endometrial adenocarcinoma Ishikawa; 4: human prostate carcinoma PC3; and 5: CD147-knock down PC3)
(B) by Western blot analysis with aCD147abs.
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02pM 02pM 01pM 10pM 01pM  0.1pM  GSH-DXR
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micelles

Fig.13. Cytotoxicity and accumulation of aCD147ab—micelles (for 1 hour of exposure) against several cells. 1: aCD147ab-micelles,
2: rabbit immunoglobulin G (IgG)—micelles. (A) Cytotoxicity of aCD147ab—micellessGSH-DXR (for 1 hour of exposure)
against Ishikawa, A431, A2780, A2780ADR, PC3, and PC3/KD (CD147 knock down) cells. (B) Accumulation of aCD147ab—
micelles (upper panel) and control rabbit IgG—micelles (lower panel) for 0.5 hour of exposure in human carcinoma cells (A431,

Ishikawa, A2780, and PC3). Accumulation of micelles was observed under fluorescent microscopy with Thermofisher Alexa
548 dye.
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Fig.14. Cytotoxicity of some proteasome inhibitors against Ishikawa (IshP) and epoxomicine (EXM)-resistant Ishikawa (IshR) cells.
Cytotoxicity of EXM (A), N-(Benzyloxycarbonyl)leucinylleucinylleucinal (MG-132) (B), N-[(Phenylmethoxy)carbonyl]-
L-isoleucyl-L- a —glutamyl-tert-butyl ester-N-[(1S)-1-formyl-3-methylbutyl]-L-alaninamide (PSI) (C), [(1R)-3-methyl—-
1-({(2S)—-3—phenyl-2—[(pyrazin—2-ylcarbonyl)amino]propanoyl}amino)butyl]boronic acid (PS—-341, Bortezomib) (D), and
DXR (E) against Ishikawa and Ish/EXM cells. The cells were cultured continuously for 96 hours at 37°C in a 48-well culture
plate with 0.5 ml of EXM, MG-132, PSI, PS-341, or DXR containing growth medium at graded equivalent concentrations of
each drug. After incubation, 3—(4,5-dimethylthiazol-2-yl)-5-(3—carboxymethoxyphenyl)—2-(4-sulfophenyl)-2H-tetrazolium
(MTS reagent) was added to each well and measured at 490 nm*?,
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B ENRBEINZ (Fig.15A). T I T, (Mt
fiel D & s 5 Wil [N F D FEH & = E I SiIRNAT
MFIL-EZ A, ZEBIOFRZNH TSI LT
CDH1 OREEMNBLET - & > /N EL X)L THIE
L, ZEB2 DI TIZH TN 5 DOEIER, &
DD TFIHIFE E A ERNRDTRD S 72 (Fig.16).
&if, 2<OEERETRIOHEN~ 70
RNAMIRNA) IZE > TITHhN TS ENnbi, EMT
BIETH mMRNA DG L TW B A dH 58 3
DT, ZOAUBEIZOWTHRNTHEE T A,
miR200a, miR200b, miR200c, miR141 D FE B Asifif i
MM THEL TWAEY (Figl?). INH4D0
MIRNA IE miR200 family T JL B 51 o A [7 £ A3 )
WHDTHD. 7z, siRNAIZ X O ML D
ZEB1Z /w7 L TH, HEL TS
miR200 family D FEHIIEIE T, ZEB2D / v 7
A'v7 > TliEmiR200 family O 8 13— B8 EE L 7=
@ T, miR200 familyixZEB1® LK IC L& L,
ZEB2IIHHHIZ 7 1 — RN ZHfi L TnWad 2 &
HEZ LN (Fig.18). Z 2T, miR200 family

Cell number

R =
. W
IshP IshR

Fig.15. (A) Expression of mRNA level of epithelial marker (cadherin 1 [CDH1], collagen 1A2 [COL1A2], connexin 26 [CNX26],
beta-catenin 1: [CNTB1]), mesenchymal marker (vimentin [VIN], cadherin 2 [CDH2], fibronectin 1 [FN1]), and
transcriptional repressors (ZEB [zinc finger E-box-binding homeobox]1, ZEB2, Slug, Snail, Twist, E47/E12), and of the
protein level of E—cadherin and ZEB1 by acquirement of EXM-resistance. P, Ish/P; R, Ish/R cells. (B) Cell migration of IshP
and Ish/R. A total of 1 x 10° cells were plated in the top chamber onto a Matrigel-coated membrane (24-well insert; pore size,
8 1£m, Greiner Japan). Each well was coated freshly with Matrigel (60 mg) before the invasion assay. Cells were plated in
medium without serum and growth factors, and medium supplemented with serum was used in the lower chamber. The cells
were incubated for 24 hours, and cells that did not invade through the pores were removed with a cotton swab. Cells on the
lower surface of the membrane were fixed with methanol and stained with crystal violet. The number of cells invading through
the membrane was counted under a light microscope (3 random fields per well)*®.
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Fig.16. Effect of the knock—down of transcriptional repressors
(ZEB1, ZEB2, Snail, Slug, and Twist) by transfection
with their respective small interfering (si) RNA on
E-cadherin expression. R/si, R/nc: treatment of Ish/R
cells (R) with siRNA for each transcriptional repressor
and noncoding RNA, respectively. P, Ish/P cells*®.
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Fig.17. Comparison of the expression of several miRNAs in Ish/
P (P) and Ish/R cells (R). MiRNA level was measured
using the QuantiMir kit. Briefly, miRNA was tailed with
polyA and annealed with oligo—dT adaptor, and then
first-strand cDNA was created by reverse transcription.
The expression level of miRNA was measured with the
polymerase chain reaction using the obtained cDNA as a
template, and the primers used were: forward, miRNA-
specific sequence; reverse, universal reverse primer into
the oligo-dT adaptor sequence’®.

(A) ZEB]1 knockdown (B} ZEB2 knockdown
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Fig.18. Effect of ZEB1 (A) and ZEB2 (B) knockdown by each
siRNA on miR200 family expression. P, Ishikawa cells;
R, ISh/EXM cells; R/si, ISh/EXM treated with sSiRNA
for ZEB1 or ZEB2. CDH1 and ZEB1 mRNA were
determined with reverse transcriptase—polymerase chain
reaction. The miR 200 family was measured with the
QuantiMir kit*®.

(A) mRNA expression
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Fig.19. Effect of regulation of miR200 family expression on the
expression of ZEB1 and CDH1 (E-cadherin) mRNA
(A) and protein (B) in Ishikawa and ISh/EXM cells by
transfection with the anti-miR200 family and the pre-
miR200 family, respectively. Lane 1, Ishikawa cells; lane
2, ISh/EXM cells; lane 3, noncoding miR-transfected
Ishikawa cells; lane 4, noncoding miR-transfected Ish/
EXM cells; lane 5, anti-miR200 family (miR200a,
miR200b, miR200c and miR141, respectively)—
transfected Ishikawa cells; lane 6, pre-miR200
family (miR200a, miR200b, miR200c, and miR141,
respectively)-transfected Ish/EXM cells™.
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Fig.20. Proposed model for a molecular link between ZEB1,
ZEB2, miR200 family, and E—cadherin. In initial studies,
an inverse correlation between the miR200 family and
ZEB1 was established in Ishikawa and Ish/EXM cells.
Suppression of ZEB1 by the miR-200 family resulted
in enhanced expression of E-cadherin and acquisition
of an epithelial phenotype. During the induction of
epithelial-mesenchymal transition (EMT) in ISh/EXM
cells with acquirement of EXM-resistance, the miR200
family and E-cadherin were repressed in parallel with
an increase in ZEB1 expression. The ability to induce
EMT was dependent upon suppression of the miR200
family and induction of ZEB1 expression. Conversely,
a mesenchymal—-epithelial transition (MET) could be
induced by expression of the miR200 family in cells
that were originally mesenchymal in nature. These
results confirm that the miR200 family represses ZEB1
expression and consequently inhibits the progression
of EMT by establishing and maintaining an epithelial
phenotype. The suppression of ZEB1 expression by
the miRNA200 family is direct and occurs as a result
of the miRNA binding to the 8 and the 9 sites in the 30
untranslated region of ZEB1 (and ZEB2) mRNA®®),
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