Mahalanobis · Taguchi Systemによる新たな医学部成績評価法の検討

上 竹 慎一郎 1 中 島 尚 登 2 矢 野 耕 也 3 木 村 直 史 4 長 澤 薫 子 2 小 林 英 史 2 安 部 一 之 2 高 木 一 郎 1 横 田 邦 信 2

1 東京慈恵会医科大学内科学講座消化器・肝臓内科

- 2 東京慈恵会医科大学附属病院医療保険指導室
 - 3日本大学生産工学部マネジメント工学科
- 4東京慈恵会医科大学医学教育センター医学教育研究室

(受付 平成23年11月7日)

EXAMINATION OF A NEW RATING SYSTEM FOR MEDICAL STUDENT RESULTS USING THE MAHALANOBIS • TAGUCHI SYSTEM

Shinichiro Uetake¹, Hisato Nakajima², Kouya Yano³ Naofumi Kimura⁴, Kaoko Nagasawa², Eiji Kobayashi² Kazuyuki Abe², Ichiro Takagi¹, Kuninobu Yokota²

¹Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine.

²Department of Medical Insurance Instruction, The Jikei University Hospital.

³Department of Industrial Engineering and Management, College of Industrial Technology, Nihon University. ⁴Division of Medical Education Laboratory, Department of Medical Education Center, The Jikei University School of Medicine.

The aim of this study was to correct evaluation for the students' efforts in every subject. Because evaluation on the basis of conventional addition score is insufficient, the possibility of using other factors was examined. In this study, the Recognition Taguchi (RT) method, to which a correlation was added, was used. The unit space of RT method was established with 4 high-achieving students more than 85% of goal averages. The results of 93 students were evaluated with the Mahalanobis distance (D^2) . The D^2 was normalized (A) using the mean of unit space. Between the addition score (B) and A, the coefficient of correlation was -0.927. The correlation between B and the reciprocal of A was 0.933. The coefficient of correlation of Log B and A was -0.835. The coefficient of correlation of 1/Log B and A was 0.936 and was higher. Our results suggest the Possibility of scholastic evaluation with the RT method.

(Tokyo Jikeikai Medical Journal 2012;127:91-103)

Key words: Mahalanobis • Taguchi method. Recognition Taguchi method, Two sided Taguchi method, Mahalanobis distance, evaluation of student results

I. 緒 言

我が国における成績評価の基準¹⁾ として,従来,他の学習者と成績を比較し,学習集団内でどの程度の順位にあるか,による相対評価が用いられてきた.しかしながら2000年代になり,個人の成

績そのものを単独で評価する絶対評価が多く用いられている。また、医学部における進級試験は、口頭試問や論文作成の比率は少なく、医師国家試験に準じて多肢選択問題方式を多く採用し、その採点結果を絶対数として加算的に集計し、採点結果を学生の成績としている。このような試験では、

総合評価は採点点数の合計であり、科目毎の成績の偏りや科目間の相関は評価に組み入れられない。すなわち、科目間の成績に偏りのある学生も、偏りの少ない学生も同等に評価されている。採点点数の加算得点による評価は歴史が古く、一般的評価法¹¹として確立されている。しかしながら加算得点のみの評価では、学生の努力等を加味した評価としては限界が認められるため、医師国家試験では、面接試験も検討されている。

そこで我々は、少しでも学生の科目毎の努力に対する評価を是正し、加算得点では不十分な他の要因も加味した評価が可能であるか検討した。各科目の採点点数の絶対数の和による従来の順位評価ではなく、各科目の点数の相関関係をすべて加味して評価可能な、品質工学の手法であるMahalanobis・Taguchi system²⁾の中の、Mahalanobis・Taguchi (MT) 法、Recognition Taguchi (RT) 法、および両側Taguchi (T) 法を用いた。

成績評価法の一つとして、高田ら³ は、プログラミングの適性能力評価にMT法を用いている。また鈴木ら⁴ は、普通のプログラムを行った作成者でMT法における単位空間を作成し、良いプログラムの作成者と悪いプログラムの作成者をMT法で分けて評価を行っている。我々は、今までMT systemの医学への応用として、健康診断の判定⁵ → や、肝疾患の診断 つ → さらに医療統計データからの病院ランキング 10 に応用し報告してきた。今回我々は、単なる加算得点の集計による順位付けではなく、任意の成績の学生、成績上位の学生、および成績中位の学生を抽出して単位空間を作成し、他の学生のMT法での順位付けで、MT法の前述した特徴を生かした評価が可能か、その評価手順を試みた。

Ⅱ. 対象と方法

- 1. Mahalanobis・Taguchi法, Recognition Taguchi法 及び両側Taguchi法とは
- 1) Mahalanobis · Taguchi 法について

Mahalanobisの距離 (D°) を用いて逆行列を利用した方法⁹で,単位空間で求めた対象の平均値が一般に「1」になることが特徴である。逆行列の計算精度が維持できる程度に項目間の多重共線

性がなく、各項目の標準偏差 $\sigma=0$ でない場合に使用できる。

2) Taguchi法 (3): Recognition Taguchi法について T法には、3種の方法¹¹⁾ がある. T法 (1) は、 単位空間が中央にある場合(両側T法), T法 (2) は、単位空間が片側にある場合(片側T法), T 法 (3) は、標準signal-to-noise (SN) 比と余因 子行列を利用する方法である.

T法(3)は、RT法(認識法)とも呼ばれており、信号の真値がない場合に用いる。たとえば火災の場合、ぼやや火事や大火事などの程度は真値が分からないので、項目ごとにデータを求めて、データごとのSN比と感度を求める。つぎに、両者からMT system中の、余因子行列を用いるMahalanobis・Taguchi Adjoint法を使って単位空間のD°を求める。そして、単位空間のD°と単位空間に属さないデータのD°を比較する方法である。

3) Taguchi法(1):両側Taguchi法について

パターンの差による推定法¹¹⁾ であり、結果が中央付近のデータを単位空間にとる。たとえば、経営利益や株価や降雨量などの場合、変化が安定している時のデータで単位空間を作成し、正負のどちらのデータも予測したい場合に用いる方法である。

4) 成績データの扱いについて

今回使用した成績データは,個人が特定できる項目は除外した状態で使用し,学内の倫理規定に沿った扱いを行った.

Mahalanobis・Taguchi法,およびRecognition Taguchi法を用いたMahalanobisの距離による順位の検討

東京慈恵会医科大学医学部医学科学生 97名の,24科目で1,040点満点の進級試験を行ったあと,従来通り加算得点により順位評価を行う。それとは別に,24科目で1,040点満点の結果を用い,MT法とRT法を用いて,学生毎に各々の方法の, D^2 を計算し, D^2 による順位評価が可能であるかの検討を行った。

1) Mahalanobis・Taguchi 法による Mahalanobis の 距離の検討

MT法では、単位空間作成に項目(科目)数以上のデータ数が必要なため、24科目27学生を任意に抽出し、その27名の試験成績を単位空間作成のデータとした(Table 1)。そして、残り70名

Table 1. Results data of 27 students who used it for unit space making of MT method. The line shows ID number and examination subjects, and the row shows perfect score and student's data.

Perfect score		24 73	66 2	20 3	6	78 2	24 3	36 6	60 5	59 53	3 59		20 6	9 09	67 48	8 27	8	œ	29	32	45	65	.	40 1,040	
No.		A B	J	٥	ш	Ь	G H	-	_	Υ Υ	'		¥	z	0 P	0	~	S	-	n	>	>	×	Total (Goal average
_				19 3	0	67 2	4 3	3 5	50 5	52 47	7 57		20 5	52 6	61 42	2 25	8	7	75	28	36	61	38	940	%86.06
7	16 1	13 67	62 1	17 3	33 6	1 2	23 31			53 38	8 54	`	16 5	52 6	50 48	8 25	. 7	7	25	27	31	63	38	806	87.31%
ĸ				19 3		62 2		30 5	-	49 47		`			62 48		8	7	23		36	9	38	893	85.87%
4				20 2	27 6	4 2	23 3	34 5	59 4	48 48	8 53		4	45 6	60 42	2 24	1 5	4	23	3 26	36	53	39	882	85.10%
2				19 2	20 6	5 2	24 3	3 5		45 47		-		47 5	56 45		∞	∞	25	. 26	31	26	34	878	84.42%
9				20 3	33 6	7	12 3	3 4	47 4	47 50	0 48			43 5	53 39	9 22	7	2	23	26	35	62	39	876	84.23%
7				17 3	31 5	58 2		34 4	41	43 44	4 52		17 4	40 6	61 45			∞	28	3 27	28	28	38	859	85.60%
œ			. 69	16 2	59 6	68 2	24 3	0 3	39 5	50 45	5 41			50 5	55 42	2 23	∞	∞	23		32	28	34	850	81.73%
6				15 2	9 97	1 2	24 30	30 4		0 41	1 44		17 5	5	9 41	1 23	_	2	25	25	28	29	34	849	81.63%
10					28 6	53		34 5	-	9 43	3 43			44 5	59 45		1	2	25	, 22	27	26	38	838	80.58%
				15 1	9 61	7	7 3	34 5	51 5	54 40			13 3	36 5	56 45	5 23	∞	7	29	13	31	22	32	837	80.48%
					9 /	7	18 3	30 5	54 4	49 46			-	48 5	57 48	8 24	7 +	4	20	13	23	61	27	832	80.29%
			, 99	14 2	m	64 2	24 2	7 4	41	48 41	1 47		16 4	48 5	59 45		. 5	∞	70) 21	27	28	31	832	80.29%
			53	13 3	0	65 2	23 31	_	48 5	7 31	-		12 3	36 5	58 42	2 22	∞	2	28	25		49	39	832	80.00%
			53	17 2	0		20 30	_	46 4		6 52		19 4	43 5	9 45	5 19	3	7	17	, 21	27	61	35	827	79.52%
					6	• •	21 30	_		1 38			14 3	38 5	53 39		∞	2	29	26		61	34	826	79.42%
			-	18 2	6	66 2	21 3	4		45 41	1 45		•	44 5	54 45	5 25	. 7	4	17	, 22	34	28	36	825	79.33%
			, 4c	16 2	25 5	7 2	11 2	25 5	50 5	5 46	6 47		13 3	38 5	51 39	9 25		7	25	24	36	52	39	824	79.23%
				16 2	28 6	60 2	21 3	4	47 4	46 38	8 48		•	48 5	55 42	2 19	_	∞	23	23	21	9	33	822	79.04%
			52	15 3	32 5	56 1	17 3	2 4	41 5	•		`	13 4	46 4	49 45	5 27		2	22		28	45	36	821	78.94%
			53	16 2	29 5	56 2	23 3.	-		6 37				39 5	54 42	2 23	4	4	23	22	30	26	40	820	78.85%
			, 25	18 2	27 6	5 2	•	28 3	39 4	46 32	2 45	•	•	44 6	61 42	2 23		7	19		29	20	38	818	78.65%
23			, 05	15 3	30 5	56 2	20 3	4		12 42	2 36	`	15 4	42 5	56 45		7	∞	29	, 22	33	22	34	816	78.46%
	32 1		. 69	17 2	9 97	2 2	21 3	1 3	39 5	51 38	38 45	·	13 4	7 5	52 45	5 25	4	7	22		26	29	34	810	77.88%
			53	14 2	25 5	7	3.	3 4	40 4	45 34	4 46		16 3	36 5	58 44	4 22	3	7	25		21	28	37	807	77.60%
				17 2	23 6	64 2	21 2	6 3	38 4	•	38 5	1	5 3	39 5	55 45	5 21	9	∞	20	8	24	29	32	803	77.21%
				15 1	9 2	57 1	5 2	2	47 4	45 47	7 49		8	40 5	55 42		5	7	23	3 15	27	61	32	80	76.92%

Table 2. Results data of 4 students who used it for unit space making of RT method. The line shows ID number and examination subjects, and the row shows perfect score and student's data.

	Goal	90.38%	87.31%	85.87%	85.10%
1,040	Total	940	806	893	885
40	×	38	38	38	39
6 2	>	61	63	9	53
45	>	36	31	36	36
32	n	28	27	25	26
29	_	29	25	23	23
∞	S	7	/	/	4
∞	~	∞	/	∞	2
27	Q	25	25	24	24
48	Ь	42	48	48	42
67	0	61	9	62	9
9	z	52	52	47	45
20	¥	20	16	4	14
29	٦	22	54	26	53
53	¥	47	38	47	48
29	٦	52	53	49	48
9	_	20	27	53	29
36	Ι	33	31	30	34
24	ŋ	24	23	21	23
78	ш	6 7	61	62	64
39	Е	30	33	33	27
20	D	19	17	19 33	20
99	C	62	62	29	57
24 73 66 20 39	8	73	3 67 62	63	69
	4	19 73 62	13	9 63	12
Perfect score	Q	67	2 16 13	53	81
Per	N _o	_	7	٣	4

Table 3. Results data of 15 students who used it for unit space making of the two sided T method. The line shows ID number and examination subjects, and the row shows perfect score and student's data.

	Goal average	73.94%	73.75%	73.56%	73.37%	73.17%	73.08%	72.98%	72.98%	72.88%	72.88%	72.79%	72.79%	72.31%	72.31%	72.31%
1,040	Total	69/	767	765	763	761	260	759	759	758	758	757	757	752	752	752
4	×	76	29	34	37	24	29	31	27	36	30	35	32	34	29	32
9	>	49	52	20	22	49	47	49	22	4	22	53	49	26	53	53
45	>	25	28	30	23	25	76	32	21	30	26	16	21	25	76	27
32	n	16	20	19	21	18	16	20	18	18	18	19	16	17	16	20
29	⊢	22	23	19	22	23	25	20	22	25	20	19	25	20	22	25
∞	S	4	2	_	2	2	2	∞	4	∞	4	2	∞	/	/	2
∞	~	7	4	_	٣	_	4	4	_	2	4	9	∞	_	4	2
27	Q	21	25	22	26	20	21	24	25	21	25	19	76	19	23	25
48	Ь	42	4	39	42	4	38	38	45	4	39	39	39	45	45	36
29	0	22	24	20	45	53	22	24	48	46	49	22	45	49	24	45
09	z	51	40	38	39	36	23	32	39	40	45	34	4	38	40	34
20	×	11	∞	13	12	16	∞	17	10	12	9	6	12	13	15	12
26	_	39	45	4	45	38	45	9	4	34	46	45	45	36	30	38
53	¥	41	9	4	27	49	42	34	38	34	36	53	33	34	43	34
26	٦	47	21	40	45	45	51	4	48	20	40	48	20	46	49	37
09	_	35	38	20	46	26	45	37	47	49	35	4	34	20	30	4
36	I	33	29	24	30	32	29	31	32	27	32	29	28	30	28	34
24	G	15	20	22	24	20	20	24	21	21	24	20	21	18	21	24
78	ш	20	61	20	21	62	89	20	48	54	28	61	64	49	26	61
39	ш	32	25	29	25	76	31	25	26	22	20	25	25	53	32	22
20	D	15	16	4	7	12	15	16	19	13	15	10	17	4	13	17
99	C	62	52	22	61	43	48	26	09	22	28	26	9	24	48	54
73	В	63	26	99	53	26	09	62	22	9	9	47	26	26	26	64
24	٧	∞	2	2	13	∞	6	4	/	∞	∞	6	∞	9	12	10
Perfect score	Q	22	28	47	9/	21	80	9	75	22	94	20	82	٣	85	4
Per	8 8	_	7	က	4	2	9	_	∞	6	10	7	12	13	4	15

Table 4. The results data of 6 students whom mark order and the mark estimate intended for. The line shows ID number and examination subjects, and the row shows perfect score and student's data.

	Goal	65.96%		65.00%		81.73%	81.63%
1,040	Total	989	9/9	9/9	859	850	849
40	×	31	25	28	38	34	34
65	*	09	52	54	28	28	29
45	>	20	18	23	28	32	28
32	n	14	18	13	27	28	25
29	⊢	23	17	22	28	23	25
∞	S	4	9	/	∞	∞	2
∞	2	~	~	_	m	∞	/
27	Q	16	10	17	25	23	23
48	Ь	34	39	30	45	42	4
29	0	39	46	47	61	22	29
09	z	30	32	34	9	20	21
20	¥	∞	7	/	17	16	17
29	٦	39	36	37	52	4	4
53	¥	31	21	34	4	45	4
26	٦	42	4	9	43	20	20
9	_	4	45	33	4	39	45
36	I	20	24	22	34	30	30
24	G	16	13	24	24	24	24
78	ш	49	9	20	28	9	61
39	ш	29	10	15	31	29	26
20	۵	17	15	4	17	16	15
99	J	55	9	22	29	29	28
73	В	55	62	28	69	62	99
24	4	10	12	7	6	10	15
erfect score	Ω	10	45	89	24	99	∞
Per	No	-	7	က	4	2	9

Table 5. The results data of 76 students whom the order evaluation intended for. The line shows ID number and examination subjects, and the row shows perfect score and student's data.

Perfect 34 77 26 70 30 78 34 40 60 61 50 60 61 74 8 27 8 8 20 21 45 41 10 10 10 Perfect 34 72 54 50 30 31 26 61 30 31 45 54 70 10 10 10 10 10 10 10 10 10 10 10 10 10
24 / 3 00 20 37 / 6 24 30 00 37 33 37 20 00 0 / 40 21 0 0 0 27 32 43 03 30 30 30 30 30 30 30 30 30 30 30 30
CDEFGHIJKL
19 73 62 19 30 67 24 33 50 52 47 57 20 52 61 42 25 8 7 29 28 36 61 38 940 90.38% 39 34 14 52 60 13 26 58 20 30 37 42 39 44 12 37 56 38 18 0 7 25 20 29 57 37 771
16 13 67 62 17 33 61 23 31 57 53 38 54 16 52 60 48 25 7 7 25 27 31 63 38 908 87.31% 40 49 8 60 60 16 28 57 18 25 47 48 37
53 9 63 59 19 33 62 21 30 53 49 47 56 14 47 62 48 24 8 7 23 25 36 60 38 893 85.87% 41 18 10 64 61 14 22 49 23 25 5
81 12 69 57 20 27 64 23 34 59 48 48 53 14 45 60 42 24 5 4 23 26 36 53 39 885 85.10% 42 25 10 57 52 8 32 54 14 29 38 41 41 43 3 42 60 41 22 3 6 26 17 24 53 30 746
40 16 66 62 19 20 65 24 33 50 45 47 57 17 47 56 45 21 8 8 25 26 31 56 34 878
37 12 70 66 20 33 67 12 33 47 47 50 48 17 43
12 59 62 19 28 63 18 34 51 49 43 43 15 44
73 13 72 60 15 19 67 17 34 51 54 40 47
10 71 56 16 27 61 18 30 54 49 46 50 15 48 57 48 24 7 4 20 13 23 61 27 835
87 15 62 66 14 23 64 24 27 41 48 41 47 16 48
46 12 63 63 13 30 65 23 31 48 57 31 42 12 36
72 15 59 63 17 20 66 20 30 46 47 36 52 19 43
69 9 67 57 13 29 65 21 30 41 51 38 45
93 8 62 53 18 29 66 21 34 47 45 41 45
55 15 61 54 16 25 57 21 25 50 55 46 47
51 15 59 58 16 28 60 21 31 47 46 38 48
39 10 63 62 15 32 56 17 32 41 54 44 52
97 9 66 63 16 29 56 23 33 44 46 37 47
66 8 59 65 18 27 65 23 28 39 46 32 45 16 44 61 42 23 7 7 19 27 29 50 38 818 78.65% 57 6 15 60 53 11 11 56 18 31 43 46 37 39 9 33 44
42 16 59 60 15 30 56 20 31 41 42 42 36 15 42
32 14 63 59 17 26 60 21 31 39 51 38 45 13 41 52 45 25 4 7 22 18 26 59 34 810 77.88% 59 9 11 56 59 9 25 58 21 28 31 48 39 38 13 39 43 42 12 3 5 16 16 18 51 31 31 31 31 31 31 32 43 43 43 43 43 43 43 43 43 43 43 43 43
36 17 66 63 14 25 57 18 33 40 45 34 46 16 36 58 44 22 3 7 25 22 21 58 37 807 77.60% 60 96 10 59 43 14 19 52 18 27 39 39 28 39 12 41 51 1
35 11 61 62 17 23 64 21 26 38 47 38 51 15 39 55 45 21 6 8 20 20 24 59
38 18 63 62 15 19 57 15 25 47 45 47 49 8 40 55 42 23 5 7 23 15 27 61 32 800 76.92% 65 68 13 56 47 12 26 57 24 25 39 37 30 42 13 40 52 48 22 3 5 20 13 15 39 38 18 63 62 15 19 57 15 25 47 45 48 50 50 50 50 50 50 50 50 50 50 50 50 50
54 14 66 51 16 29 61 18 31 46 41 39 40 16 37 62 39 24 4 7 23 18 24 60 34 800 76.92% 63 44 6 47 60 17 26 42 18 29 36 36 38 38 41 13 33 56 40 16 7 5 19 15 26 52 26 704 67 54 18 60 51 16 29 61 18 31 46 41 13 33 56 40 16 7 5 19 15 26 52 26 704 67
90 11 62 59 18 30 53 21 31 37 49 34 42 15 39 48 39 25 7 4 26 23 30 58 38 799 76.83% 64 4 12 38 52 13 30 46 18 16 36 46 37 43 11 38 46 41 21 4 4 25 18 30 47 32 7
13 7 61 56 15 35 65 20 28 39 52 44 42 15 34 57 36 23 4 8 13 20 31 55 37 797 76.63% 65 62 8 56 54 14 30 58 17 27 38 42 24 37 12 35 45 41 17 4 3 14 18 28 51 27 700
33 9 66 59 18 28 62 21 25 43 46 44 61 135 54 38 22 3 7 25 21 29 57 35 794 76.35% 66 26 7 63 56 15 19 50 18 24 38 44 34 40 10 32 35 44 19 4 8 22 13 21 449 30
78 11 65 58 16 26 52 33 44 34 73 04 3 9 35 48 45 26 7 8 22 18 26 59 35 790 75.96% 67 7 12 52 53 1 0 54 20 35 48 41 36 43 64 25 03 41 9 1 4 16 20 25 50 33 695
29 12 60 65 12 16 61 24 32 29 47 44 38 16 48 57 36 25 5 7 29 19 24 45 35 786 75.58% 68 84 11 47 46 13 16 50 15 27 37 43 34 41 8 45 46 42 25 4 5 22 14 20 53 31
12 11 66 59 15 29 62 17 29 40 42 43 42 6 37 47 41 25 4 8 25 23 29 51 34 785 75
88 10 59 59 16 23 62 24 34 44 54 46 31
70 16 59 52 12 31 58 17 31 50 48 37 40
10 59 56 16 27 59 21 30 44 43 44 44
63 12 65 58 15 18 58 20 29 43 49 42 45 12 44 60 39 18 8 4 13 20 29 48 31 780 75.00% 73 43 5 34 45 10 23 47 21 19 38 37 16 38 2 19 33 35 14 4 4 20 13 22 49 32 580
79 11 55 60 18 23 60 18 32 47 48 31 47 13 34 50 44 16 8 3 23 22 31 51 30 775 74.52%74 1 5 40 65 10 19 34 7 27 32 29 27 29 4 33 27 37 13 1 3 16 15 7 39 17 536
48 11 57 62 17 21 59 15 31 50 46 31 39 16 36 49 42 19 7 4 25 22 28 54 32 773 74.33% 75 23 2 41 41 11 21 48 14 17 36 30 24 21 14 24 29 22 10 1 7 15 18 19 45 17 527 50
61 60 15 28 49 12 31 40 47 39 47

の学生の D^2 による成績順位を検討した。

2) Recognition Taguchi 法による Mahalanobis の距離の検討

RT法では、MT法に比べ単位空間のデータ数が少なくてよいのが特徴であり、また単位空間に必要なデータ数は余因子行列の自由度から3データが下限である。単位空間データは分布の端であればよいので自由度の下限を考慮し、最高得点940点(得点率90.38%)から得点885点(得点率85.10%)までの得点率85%以上の、最上位の学生4名のデータ(Table 2)で単位空間を作成した。

3. 両側Taguchi法による「±」の符号による成績順 位の検討

一般に単位空間よりD²値が大きくなるほど、成績は上位か、下位といえる。そのため両側T法では「 \pm 」の符号を付ける事による成績の上位「 \pm 」・下位「-」の区別が可能かの検討を行った。1,040点満点で採点した結果、最頻値が760点のため、 \pm 10点の学生を平均的として15名抽出し、単位空間作成のデータに用いた(Table 3)。検討対象として、合計点数の中央値(=平均値)の760点に対し、860点前後3名と660点前後3名の、計6名を選んだ(Table 4)。

4. 両側 Taguchi 法による学生成績点数の推定

成績の点数(対数)が推定可能かを検討した.明らかに点数が判明している学生の成績(教師信号)は、総得点数の最上位が940点(得点率90.38%)、最下位が471点(得点率45.29%)で、合計76名であった(Table 5).この学生76名の点数の挙動を学習信号として用い、76名の対数値を手掛かりにして、前項で抽出した6名の学生の成績点数(対数)の推定を行った。

5. 計算方法

検討には、オーケン製MTシステム 1、MT法 およびT法・RT法(Excel版)を用いた。また、試験点数はある範囲内では加法性が存在するものの、点数自体には上限があることから無限に加法性が認められるのではないため、両側Taguchi法による推定では $-\infty$ から $+\infty$ になるよう対数値とした。またこれは試験点数が目的変数となるため、目的変数の線形性を対数値にすることで改善をし、結果的に推定精度の向上を期待していることも理由である。

Ⅲ. 結 果

1. Mahalanobis・Taguchi法によるMahalanobisの距離の検討

MT法では、24科目27学生で単位空間を作成し、残り70名の学生の D^2 による成績順位を検討した。その結果、加算得点との相関係数は-0.551であった(Table 6)。

2. Recognition Taguchi法によるMahalanobisの距離の検討

つぎにRT法を用いた。得点率85%以上の最上位学生4名で単位空間を作成し,残り93名の学生の D^c による成績順位を検討した。Table 7に93名の成績データを,Table 8に,MT法とRT法による相関係数のまとめを示す。計算した結果, D^c は非常に大きい値であったため単位空間の平均値で正規化を行い (A),加算得点Bとの相関係数を計算すると-0.927と負の相関であった。このBの逆数1/BとAの相関係数は0.933と高い値であった。LogBとAの相関係数は,Table 7に示すように、-0.835,1/LogBとAでは0.936と向上した。

両側Taguchi法による「±」の符号による順位の 検討

「 \pm 」の符号を付けることによる成績の上位・下位の区別が可能か,その識別性の推定精度のSN比は43.5830dbと高く,また6名の順位は,加算スコア順に表示した。加算順位で,1,2,3,4,5,5位であったが,両側T法の「 \pm 」の符号による順位は,1,2,3,5,4,6位の順であった。加算順位の下位2名の5位が同点であるが,加算順位と両側T法の「 \pm 」の符号による順位とでは,加算順位の同点である5位が区別された。(Table 9)・

4. 両側 Taguchi 法による学生点数の推定

推定点数の検討では、学生6名の加点得点をCとする。直接の差分推定値は、対数で、-0.0481から+0.0598であった(Table 10)。これに平均値(対数値)を加え推定点数とし、その後1,040点満点の実数に換算すると、通常の推定点数になる(C')。そして、実際の加算点数Cと推定結果C'との差が、いわゆる推定誤差(C'C) /1,040になる・推定誤差の点数は低い方で、-4.6点であるが、高い方で、+12.3点と低い方に比べやや大きくなるが、1,040点満点であることを考慮すればどちら

Table 6. Correlation of order by additive score \boldsymbol{B} and the order by the \boldsymbol{D}^2 level of 70 students using MT method. (\boldsymbol{R} =-0.551)

D^2 of MT (Order by D ²	Additive score B	Order by additive score	D^2 of MT	Order by D ²	Additive score B	Order by additive score
185.3098972	_	889	09	26.49930027	36	969	58
160.0150464	2	471	70	26.06131210	37	785	7
155.7132346	r	629	65	25.21454424	38	720	47
128.1400479	4	730	40	24.50040297	39	746	32
123.8162483	2	929	62	23.67982593	40	580	29
91.56811051	9	639	2	22.75692652	41	794	4
91.45851192	7	707	52	19.70180874	42	740	36
89.08130759	œ	527	69	19.59587744	43	773	13
81.75745877	6	704	72	19.20341897	44	708	51
80.75748935	10	536	89	18.86013144	45	704	55
80.35899741	11	757	27	18.83362186	46	989	61
72.56396797	12	700	26	18.79636243	47	720	48
70.26254903	13	692	17	18.39682667	48	752	31
66.75936223	4	731	39	18.32588804	49	782	6
65.94217983	15	707	53	17.35635254	20	752	29
59.91184405	16	780	11	17.17281316	51	729	41
55.19522780	17	712	20	17.01216580	52	767	3
52.84208394	18	759	24	16.14164704	53	260	22
52.23910933	19	9/9	63	15.94121433	54	758	26
50.77316261	20	741	35	15.76783198	52	266	2
48.53777631	21	738	37	15.46172482	26	728	42
41.04408457	22	763	20	14.59033057	57	785	∞
40.50826801	23	746	33	14.26371765	58	725	4
39.39221210	24	759	23	14.08950390	26	167	18
37.99076916	25	695	26	12.86887642	09	728	43
37.33240191	26	757	28	11.59636167	61	761	21
35.58023772	27	772	14	9.262777201	62	714	49
35.42089105	28	609	99	8.882958390	63	771	15
34.82028283	29	765	19	8.777857768	64	743	34
34.03220103	30	695	22	8.244602761	65	770	16
32.82496328	31	786	9	7.728296042	99	780	10
32.54177146	32	758	25	6.122167210	29	800	—
30.43505598	33	722	45	5.425351603	89	752	30
29.47423275	34	734	38	5.420823493	69	2	2
28.02542847	35	775	12	5.042015227	70	720	46

Table 7. The details of correlation with additive score B and normalized value A of the D^2 level order of 93 students using RT method.

o ē	Normalized Order by value A of normalized	score B	1/B Log B		Order by	Order by B	Ω	Order by additive	Normalized Order by D^2 value A of normalize	vormalized Order by value A of normalized	score B	1/8	Log B	1/Log B	Order by	Order by B
寅	value A	R=-0.927	R=0.933 R=-0.835	35 R=0.936	I/Log D	R=0.800		score B	WD	value A	R=-0.927	R=0.933	R = -0.835	R=0.936	I/Log D	R=0.800
ľ	_	471	0.002123142 2.673020907	907 0.374108559	1	93	9	46	1.34222E+16 4.943979517	28	759	0.001317523	2.880241776	0.001317523 2.880241776 0.347193075	48	46
7		527	0.001897533 2.721810615 0.367402491	615 0.367402491	2	92	80	45	1.63403E+16 6.018830847	40	760	0.001315789	0.001315789 2.880813592 0.34712416	0.347124161	49	42
m		236	0.001865672 2.729164790 0.366412466	790 0.366412466	٣	91	21	4	2.37698E+16 8.755446128	14	761	0.001314060	2.881384657	0.001314060 2.881384657 0.347055364	20	4
٠,		280	0.001724138 2.763427994 0.361869389	994 0.361869389	4 r	0 8	9 1	£ 4	1.31766E+16 4.853526398	9 :	763	0.001310616	2.882524538	0.001310616 2.882524538 0.346918122	2 2	2 4
4 o		609	0.001642036 2.784617293 0.339113776	293 0.359115776	c 4	60 8	786	7 +	1.20119E+16 4.424307154	8 2	747	0.001307190	0.001307190 2.883661435 0.346781343	0.00130/190 2.883661435 0.346/81348	25	4 4
יו כ		630	0.001569625 2.756650645 0.357513652	858 0.356442593	0 1	8 8	22	- 4	2 04769E+16 7.549512633		769	0.001303787	2 885926340	0.0013003781 2.8847838384 0.348843838	3 2	F 4
9		676	0.001479290 2.829946696	696 0.353363546	- ∞	82	4 5	36	1.35594E+16 4.994512525	57	22	0.001298701	2.886490725	0.001298701 2.886490725 0.346441439	22	36
-	~	9/9	0.001479290 2.829946696 0.353363546	696 0,353363546	6	86	34	38	1,11333E+16 4,100889867	99	77	0.001297017	2,887054378	0.001297017 2.887054378 0.346373801	26	38
-		989	0.001457726 2.836324116	116 0.352569015	9	8 8	74	37	1.65081E+16 6.080644817	39	772	0.001295337	2.887617300	0.001295337 2.887617300 0.346306278	57	37
6		889	0.001453488 2.837588438	438 0.352411924	Ξ	83	48	36	1.50945E+16 5.559973320	48	773	0.001293661	2.888179494	0.001293661 2.888179494 0.346238869	28	36
Ξ		695	0.001438849 2.841984805	805 0.351866765	_	80	79	32	1.72606E+16 6.357812425	37	775	0.001290323	2.889301703	0.001290323 2.889301703 0.346104389	29	32
25		969	0.001438849 2.841984805	805 0.351866765	_	81	11	33	1.41551E+16 5.213927249	23	780	0.001282051	2.892094603	0.001282051 2.892094603 0.345770155	09	33
78	~	695	0.001438849 2.841984805 0.351866765	805 0.351866765		82	63	34	1.40352E+16 5.169772913	24	780	0.001282051	2.892094603	0.001282051 2.892094603 0.345770155	61	34
16	2	200	0.001428571 2.845098040 0.351481737	040 0.351481737		79	20	32	1.22381E+16 4.507814419	63	782	0.00127872	2.893206753	0.001278772 2.893206753 0.345637241	62	32
_	17	704	0.001420455 2.847572659 0.351176289	659 0.351176289		77	88	31	1.36960E+16 5.044832622	26	785	0.001273885	2.894869657	0.001273885 2.894869657 0.345438696	63	<u>ج</u> :
(*) (32	704	0.001420455 2.847572659	659 0.351176289		78	12	<u>۾</u>	1.20853E+16 4.451526362	92	785	0.00127388	2.894869657	0.001273885 2.894869657 0.345438696	4 :	e :
•	5 70	707	0.001414427 2.849419414 0.350948686	414 0.350948686		1,2	29	53	1.10001E+16 4.051809920	69	786	0.00127226	2.895422546	0.001272265 2.895422546 0.345372734	65	29
•	97	/0/	0.001414427 2.849419414 0.350948686	414 0.350948686		9 7	8 6	87 [1.14934E+16 4.233534014	/9	26.5	0.00126582	0.001265823 2.89/62/091 0.3451099/	0.345109971	9 (87 5
., .	0 5	77.0	0.001412429 2.850033238	256 0.350873099		4 F	5 5	/7	8.16600E+15 3.006629305 7.45746E+15 9.746765909	8 8	707	0.001259446	2.699620302	0.001259446 Z.8996ZUOUZ U.344846931	/0	/7
	5 64	714	0.001404494 2.852479994 0.350372133	994 0.330372133 212 0.350422478		2 2	2 6	25	9.28421E+15.3419778667	76	767	0.001254705	2.901450521	0.001234703 2.301436321 0.344634270	0 09	25
	30	720	0.001388889 2.857332496 0.34997677	496 0,349976771		7.	38	23	1,22787E+16 4,522781701	62	800	0.001250000	2.903089987	0.001250000 2.903089987 0.344460559	2	73
	34	720	0.001388889 2.857332496 0.349976771	496 0.349976771	24	69	54	24	9.80275E+15 3.610778746	74	800	0.001250000	2.903089987	0.001250000 2.903089987 0.344460559	7	24
	43	720	0.001388889 2.857332496 0.349976771	496 0.349976771	22	20	35	22	1.09874E+16 4.047141238	70	803	0.001245330	2.904715545	0.001245330 2.904715545 0.344267790	72	22
	24	722	0.001385042 2.858537198	198 0.349829277	79	89	36	21	7.28269E+15 2.682529715	83	807	0.001239157	2.906873535	0.001239157 2.906873535 0.344012214	73	21
	42	725	0.001379310 2.860338007 0.349609031	007 0.349609031	27	29	32	70	9.44413E+15 3.478683950	75	810	0.001234568	2.908485019	0.001234568 2.908485019 0.343821609	74	20
	88 4	728	0.001373626 2.862131379	379 0.349389971	78	65	45	19	9.85991E+15 3.631833239	۳ 3	816	0.001225490	2.911690159	0.001225490 2.911690159 0.343443136	75	19
	t 5	07/	0.001371742 2 862727528	579 0.349369971 528 0.349317212		0 4	00	0 1	5 96991E+15 2 198977767	7 10	010	0.001222494	2 91 381 3852	0.001222494 2.912793304 0.343317/81	9 / 2	0 1
	: #	730	0.001369863 2.863322860 0.349244584	860 0.349244584		63	36	14	8 95586F+15 3 298832058	. 12	82.1	0.001218027	2.914343157	0.001218027 2.914343157 0.343130492	78	: 4
	21	731	0.001367989 2.863917377 0.349172084	377 0.349172084		62	51	15	1.04997E+16 3.867499103	72	822	0.001216545	2.914871818	0.001216545 2.914871818 0.343068259	79	15
	52	734	0.001362398 2.865696060 0.348955360	060 0.348955360		61	22	14	7.06623E+15 2.602797417	%	824	0.001213592	2.915927212	0.001213592 2.915927212 0.342944089	80	4
	31	738	0.001355014 2.868056362 0.348668183	362 0.348668183		09	93	13	6.25389E+15 2.303577780	8	825	0.001212121	2.916453949	0.001212121 2.916453949 0.342882150	81	13
	26	740	0.001351351 2.869231720 0.348525354	720 0.348525354		26	69	12	8.75944E+15 3.226481643	78	826	0.001210654	2.916980047	0.001210654 2.916980047 0.342820309	82	12
	18	741	0.001349528 2.869818208 0.348454128	208 0.348454128		28	72	Ξ	8.59562E+15 3.166140053	79	827	0.001209190	2.917505510	0.001209190 2.917505510 0.342758564	83	7
	22	743	0.001345895 2.870988814 0.348312050	814 0.348312050		27	46	9	6.40457E+15 2.359082201	88	832	0.001201923	2.920123326	0.001201923 2.920123326 0.342451290	%	9
	1 = 1	746	0.001340483 2.872738827	827 0.348099866		26	7	× (1.72701E+16 6.361320358	36	835	0.00119760	2.921686475	0.001197605 2.921686475 0.342268073	82	∞ (
	4 :	746	0.001340483 2.872738827	827 0.348099866		22	87	6 1	1.08399E+16 3.992794745	7	835	0.001197605	2.921686475	0.001197605 2.921686475 0.342268073	86	6 1
	29	752	0.001329787 2.876217841	841 0.347678811	\$:	23	73	۲,	1.21369E+16 4.470547899	4 9	837	0.001194743	2.922725458	0.001194743 2.922725458 0.342146402	87	_ ,
	33	752	0.001329787 2.876217841 0.347678811	841 0.347678811	•	7 2	95	9 1	6.91327E+15 2.546457019		838	0.00119331	2.923244019	0.001193317 2.923244019 0.342085708	8 8	φι
	4/	72/	0.001329/8/ 2.8/621/841 0.34/6/8811	841 0.34 /6 /8811	47	75	×	Ω,	6.45/18E+15 2.3/8460303	x0 7	849	0.00117/856	2.928907690	0.001177856 2.928907690 0.341424212	68	n,
	33	/2/	0.001321004 2.8/9095880 0.34/331260	880 0.34/331260	5 ;	رد د د	90	4 (7.9/354E+15 2.93/001112	- ×	820	0.0011 /64 /1	2.929418926	0.0011 /64 /1 2.929418926 0.34136462 /	3 3	4 (
	1	757	0.001321004 2.879095880 0.347331260	880 0.347331260	4 :	20	24	m	2.71486E+15 1.000000000	93	829	0.001164144	2.933993164	0.001164144 2.933993164 0.340832423	۶ ۲	m
	t 1	738	0.001319261 2.8/9669206 0.34/262108	206 0.34 / 262108	C	49	3,	7 ,	6.88522E+15 2.536124509	9 10	8/6	0.001141553	2.942504106	0.001141553 2.942504106 0.339846595	76	7
	2	200	0.001319261 2.879669206 0.347262108	206 0.34/262108	44	4X	40	_	6 / 1103 = + 15 2.4 / 1963 4 22	×	×/×	0.001138952	7 94:4494516	0.334737745	ř	_

Table 8. Results of correlation level with additive score B and normalized value A of the D^2 level order using MT method and RT method.

Method	Number of students	D ²	Additive score B	Coefficient of correlation
MT	70	D^2	В	- 0.551
RT	93	D^2	В	0.800
RT	93	Normalized value \mathbf{A} of \mathbf{D}^2	В	- 0.927
RT	93	Normalized value A of D^2	1/ B	0.933
RT	93	Normalized value A of D^2	Log B	- 0.835
RT	93	Normalized value A of D^2	1/Log B	0.936

Table 9. The additive score C, additive score order and mark of \pm order of six students using two sided T method.

ID	Additive score C	Additive score order	Estimated mark for difference (Logarithm)	Mark of ± order
24	859	1	0.0598	1
56	850	2	0.0546	2
8	849	3	0.0533	3
10	686	4	- 0.0470	5
45	676	5	- 0.0435	4
89	676	5	- 0.0481	6
SN ratio [db]			43.5830	
Sensitivity [db]			- 0.00091	

も問題はないと考える.

Ⅳ. 考 察

MT法での順位は、加算得点との間には有意な 相関関係は認めなかった。Ⅱ章2.1)で述べたよ うに単位空間データとして任意に27名の学生を 選択しているが、単位空間とは目的に対して類似 した性質を持つデータ集団であり、同じような得 点を出す学生を選択する限りにおいては同様の結 果が得られると考える. しかしながら、単位空間 を構成する平均的な点数を保持する学生につい て、そのメンバーの個人差により項目間の相関関 係の変動が起こり得るため、単位空間として抽出 したデータの相違により結果の詳細な数値が変わ ることがあるが、基準とした単位空間と対象との 傾向は変化しないといえる。またRT法では加算 得点の対数の逆数で相関係数は0.936ともっとも 高く,正の相関関係を認めた。しかしながら、今 回加算得点による順位との間に完全な一致を認め なかった. この理由として、MTシステムでは、 各科目の得点間の相関関係で評価するため, 成績 が,掛け算の関係で評価され,科目点数に重みが かけられたためと思われる. したがって,従来の, 科目ごとの点数の単なる加算による集計結果に比 べて, 点数の差が数倍大きく評価可能である. ま た逆に,加算点数とD2の順位間の相関関係が完 全に一致した場合は、わざわざ計算してかによる順位を検討する必要性が認められなくなる。したがって、相関関係の差の分に、何らかの要因が加味されており、この要因に学生の努力の成果が反映されないか期待される。この要因の解析には、たとえば、日常の学生の勉強時間等のデータも必要と思われ、今後引き続いて検討を継続する予定である。

今回用いたMT systemでは、MT法のでは順位付けは無理と思われるが、RT法では、学生の努力を含めての順位付けに期待が持てる。また両側T法による「±」の符号による検討では、6名と学生数は少ないが、加算得点の高い3名では、順位付けが一致し点数の推定誤差は少なく、また、加算順位の低い点数の3名の誤差も1%前後であり、いずれも推定誤差は低いと言える。これは43.5830dbというSN比により担保される精度である。

また、点数の推定に関しては、推定点数と加算 得点との一致度が問題となる。低い点数では推定 誤差は0.35%から1.04%と少なく、高い点数でも 0.91%から1.18%と少なかった。さらに多くの学 生の推定を行うためには、対象学生を抽出して 76名より教師信号を減らすと、推定精度が落ち ると思われるため、今後全体の学生数を増やして の検討が必要であろう。

Table 10. The estimated mark and estimated error of six students using two sided T method.

ID	Additive score	Estimated mark for difference (Logarithm)	Estimated mark (Logarithm)	Estimated mark (Reduced value)	Estimated error	Estimated error (Abs) % (C'-C) /1,040
24	859	0.0598	2.9402	871.3	12.3	1.18
56	850	0.0546	2.9349	860.9	10.9	1.05
8	849	0.0533	2.9337	858.4	9.4	0.91
10	686	-0.0470	2.8334	681.4	-4.6	0.44
45	676	-0.0435	2.8369	686.9	10.9	1.04
89	676	-0.0481	2.8323	679.6	3.6	0.35

V. 結 語

MT法、RT法および両側T法での D^2 による順位評価を検討した。その結果、RT法での D^2 による順位評価は、従来の点数の加算的集計による順位評価と相関関係を認め、新しい評価手順となる可能性が示唆された。また両側T法による順位評価では、加算的な集計とは別に得点を推定することが可能であることが明らかとなった。

なお,この内容は,私立大学情報教育協会主催 の平成23年度教育改革ICT戦略大会で発表した.

文 献

- 1) 沢茂 編. 教育の方法と技術. 東京: 図書文化社;2006.
- 2) 田口玄一. 診断とSN比. 品質工学 1994;2:2-4.
- 3) 高田 圭, 高橋和仁, 矢野 宏. ソフトウェア作成能 カのアンケートによる予測へのMTS法の適用. 品質 工学 1999;7:65-72.
- 4) 鈴木隆之,高田 圭,高橋宗雄,矢野 宏.MTS法に基 づくプログラム作成能力評価の一手法.品質工学 2000;8:445-52.

- 5) 中島尚登, 高田 圭, 矢野 宏, 高木一郎, 柴本由香, 山内眞義, ほか. Mahalanobis・Taguchi System法によ る健康診断の予測的評価と効率化. 日公衛誌 1999:46:351-63
- 6) 中島尚登, 高田 圭, 矢野 宏, 柴本由香, 高木一郎, 山内眞義, ほか. 健康診断データを用いたMTS法によ る予測の研究. 品質工学 1999;7:49-57.
- 7) 中島尚登, 高田 圭, 矢野 宏, 矢野耕也, 高木一郎, 大畑 充, ほか. MT法による健康状態の予測と健康 診断の経費削減について. 品質工学 2004;12:63-72.
- 8) 中島尚登, 矢野耕也, 高田 圭, 高木一郎, 小宮佐和子, 大畑 充, ほか. 各種肝疾患に対するマハラノビスの距離による病態評価. 品質工学 2004:12:51-5.
- 9) 中島尚登, 矢野耕也, 高木一郎, 小宮佐和子, 武田邦 彦, 上竹慎一郎, ほか. MT法を用いた肝移植のための 肝炎劇症化の予知の検討. 品質工学 2006;14:58-63.
- 10) 中島尚登, 矢野耕也, 長澤薫子, 安部一之, 上竹慎一郎, 高木一郎, ほか. Diagnosis procedure combination 参加病院・準備病院の Mahalanobis の距離を用いたランキングー東京慈恵会医科大学附属病院を例として一. 慈恵医大誌 2011;126:111-33.
- 11) 品質工学会[Internet]. 品質工学とは? 品質工学Q&A MTS法. http://www.qes.gr.jp/introduction/whatqe_qa/ QA3.htm. [accessed 2011-10-07]