TRPC4 Does Not Participate in the Store-Operated Ca²⁺ Entry in Bovine Adrenocortical Fasciculate Cells

Miyuki KAGATA¹, Takashi UDAGAWA², Chikara Otsubo¹, Keiichi Ikeda¹, and Masahiro KAWAMURA¹

¹Department of Pharmacology, The Jikei University School of Medicine ²Division of Kidney and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine

ABSTRACT

Store-operated Ca²⁺ entry (SOCE) plays an important role in the regulation of diverse nonexcitable cell functions. However, a SOCE channel has not been identified. One candidate is transient receptor potential protein C (TRPC). Because TRPC4 has been reported in bovine adrenocortical fasciculate cells (BAFCs), we used fura-2-loaded BAFCs to examine whether TRPC4 participates in SOCE. Both 10 μ M uridine triphosphate and 100 μ M cyclopiazonic acid increased fura-2 fluorescence intensity by 2 phases in the presence of the extracellcular Ca²⁺. The first phase was Ca²⁺ release from the endoplasmic reticulum, and the second phase was Ca²⁺ influx from the extracellular space. When the extracellular Ca²⁺ was exchanged for Sr²⁺ and Ba²⁺, the second phase induced by uridine triphosphate or cyclopiazonic acid disappeared. The putative SOCE channel is highly Ca²⁺-selective, but TRPC4 is not. Both Sr²⁺ and Ba²⁺, in addition to Ca²⁺, can permeate via TRPC4. Therefore, our results suggest that TRPC4 is not an SOCE channel in BAFCs.

Key words: adrenal cortex, calcium, uridine trisphosphate, transient receptor potential protein C

INTRODUCTION

Store-operated calcium entry (SOCE) plays an important role in many nonexcitable cell functions, including several pathophysiolgical outcomes¹. SOCE is initiated by the depletion of luminal Ca²⁺ of the endoplasmic reticulum (ER) by inositol-3,4,5-trisphosphate (IP₃) via stimulation of G_{q/11}-coupled receptors or the treatment of cells with sarco/endoplasmic reticulum Ca²⁺-ATPase inhibitors (i.e., thapsigargin and cyclopiazonic acid [CPA])^{2,3}.

Although several hypotheses for the mechanism of SOCE activation have been proposed in the last decade, the precise mechanism remains controversial. However, the 3 predominant hypotheses are : 1) conformational coupling and secretion-like coupling, 2) vesicular fusion, and 3) a diffusible messenger¹.

These hypotheses postulate the involvement of unidentified Ca²⁺ channels in SOCE. One candidate is the transient receptor potential protein (TRP) superfamily^{4,5}. Mammalian TRPs include 7 families : TRPC, TRPM, TRPT, TRPA, TRPP, TRPML, and TRPN⁶. Of these TRP families, the most predominant and widespread is TRPC⁶. TRPC is subdivided into 7 subfamilies from TRPC1 to TRPC7⁶.

We have previously shown that the conformational coupling mechanism might participate in SOCE in bovine adrenocortical fasciculate cells

Received for publication, March 29, 2008

利田 美幸, 宇田川 崇, 大坪 主税, 池田 恵一, 川村 将弘

Mailing address: Masahiro KAWAMURA, Department of Pharmacology, The Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan.

E-mail: mkawamura@jikei.ac.jp

(BAFCs)⁷. Philipp et al.⁸ have reported that TRPC4 develops in bovine adrenocortical cells. These reports suggest the possible conformational coupling of TRPC4 in the plasma membrane (PM) and IP₃ receptors in the ER.

TRPCs are nonselective cation channels that can allow not only Ca^{2+} but also Sr^{2+} and Ba^{2+} to cross them^{9,10}. However, putative SOCE channels are highly Ca^{2+} -selective^{11,12}. Therefore, we examined the expression of TRPC4 in BAFCs and examined the indirectly whether TRPC4 participates in SOCE through the use of Sr^{2+} and Ba^{2+} as an extracellular divalent cation pool in fura-2-loaded BAFCs, because Sr^{2+} and Ba^{2+} bind to fura-2 and increase its fluorescence intensity in the same manner as Ca^{2+13} .

MATERIALS AND METHODS

1. Primary culture of BAFCs

BAFCs were isolated aseptically with 0.1% collagenase and 0.005% deoxyribonuclease I (DNase I) in Krebs-Ringer bicarbonate buffer (123.4 mM NaCl, 25 mM NaHCO₃, 5.9 mM KCl, 1.2 mM KH₂PO₄, 1.2 mM MgSO₄, 1.2 mM CaCl₂, 2 mg/ml glucose, and 3 mg/ml bovine serum albumin; pH 7.4) as previously described¹⁴. The isolated cells were cultured in Ham's F-10 medium supplemented with 5% fetal calf serum, 10% newborn calf serum, 2.5% horse serum, and antibiotics on collagen-coated cover slips at 37°C under 5% CO₂ in the air as a gas phase¹⁴. The cells grown for 2 to 3 days in primary monolayer culture were used for the subsequent experiments.

2. Reverse-transcription polymerase chain reaction of TRPC4 messenger RNA from BAFCs

BAFCs were lysed with TRIzol (Invitrogen, Carlsbad, CA, USA), and total RNA was extracted with the acid guanidium-pheno-chloroform method with DNase I treatment (Takara Bio, Otsu). Complementary (c) DNA was synthesized from 5μ M of total RNA with the Super Script III First-strand Synthesis System for the reverse-transcription polymerase chain reaction (RT-PCR) (Invitrogen). Then, RT-PCR of TRPC4 messenger (m) RNA was performed with a specific primer for TRPC4 (Gen Bank accession No. NM-174478; forward, 5'-CTCTGGGAAGAATG-CTCCTG-3'; reverse, 5'-TATATCCGCATGGT-CAGCAA-3'; annealing temperature, 63°C; PCR cycles, 35) designed with the Primer 3 Web site (version 0.4.0, http://www-genome.wi.mit.edn/cgi-bin/ primer/primer3-www.cgi) using Bioneer Accu Power PCR PreMix (Bioneer. Daejeon. Republic of Korea). The PCR products were separated with 2% agarose gel electrophoresis, and the intensity of ethidium bromide staining was detected under ultraviolet light.

3. Measurement of fura-2 fluorescent intensity in cells with the fluorescence imaging system

The cells on cover slips were incubated with 5 μ M acetoxymethylester of fura-2 (fura-2/AM) for 90 minutes at 37°C in cremophor EL (0.02%) containing Krebs-Ringer HEPES buffer (123.4 mM NaCl, 5.9 mM KCl, 1.2 mM KH₂PO₄, 1.2 mM MgSO₄, 1.2 mM CaCl₂, 10 mM HEPES, 2 mg/ml glucose, and 2 mg/ml bovine serum albumin; pH 7.4 [Ca²⁺-buffer]). After incubation, the cover slip was set up on a chamber of the microscope. The cells were continuously perfused with the buffer, to which agents were then added. Buffers used were Ca2+-buffer, Sr2+-buffer (1.2 mM Ca^{2+} replaced with 1.2 mM Sr²⁺), and Ba²⁺-buffer (1.2 mM Ca^{2+} replaced with 1.2 mM Ba^{2+}). The cells were observed with an inverted epifluorescent microscope (TE300, Nikon, Tokyo) with an objective lens of 20 to $40 \times$ magnification. The fluorescence images were obtained with a cooled charge-coupled device camera (C-6790, Hamamatsu Photonics, Hamamatsu). The emission wavelength was 510 nm, and the excitation wavelength alternated every 0.5 second between 340 nm and 380 nm. Fluorescence images were analyzed with the Aquacosmos program (Hamamatsu Photonics).

The increase in the concentration of intracellular divalent cation (Ca^{2+} , Sr^{2+} , and Ba^{2+}) is expressed as the ratio of the fluorescence intensity at 340 nm to that at 380 nm (I 340/I 380).

4. Statistical analysis

The statistical analysis was performed with Student's *t*-test. Statistical significance was assumed at *p < 0.05.

June, 2008

5. Materials

The materials were purchased from the following companies : fura-2/AM from Dojindo (Kumamoto); collagenase from Funakoshi (Tokyo), Ham F-10 medium, DNase I, and CPA from Sigma-Aldrich (St. Louis, MO, USA); uridine triphosphate (UTP) from Yamasa Co. (Chiba). All the other chemicals were of reagent grade.

RESULTS

1. TRPCs mRNA in BAFCs

The mRNA of TRPC4 was detected in BAFCs after 3 days of primary culture (Fig. 1).

 Effect of UTP on the fura-2 fluorescence intensity in BAFCs in the Ca²⁺-buffer, the Sr²⁺-buffer and the Ba²⁺-buffer

The fura-2 fluorescence intensity was increased by 10 μ M UTP in 2 phases in the Ca²⁺-buffer (Fig. 2 [A]). The first phase was fast and transient and was followed by a sustained second phase. We have previously reported that UTP enhances IP₃ production via G_{q/11} protein-coupled P2Y₂ receptors in BAFCs¹⁵. The increased IP₃ binds to IP₃ receptors in the ER membrane and releases the luminal Ca²⁺ to deplete Ca²⁺ in the ER. The depletion of Ca²⁺ in the ER triggers Ca²⁺ influx from an extracellular pool by the activation of SOCE channels⁷. Therefore, the first phase by UTP was induced by Ca²⁺ release from ER, and the second phase was sustained by Ca²⁺ influx from an extracellular space via SOCE channels in BAFCs⁷.

Then, we examined the effect of UTP on the fura-2 fluorescence intensity in BAFCs in the presence of extracellular Sr^{2+} (1.2 mM) (Sr^{2+} -buffer) or Ba^{2+} (1.2 mM) (Ba^{2+} -buffer) instead of Ca^{2+} . Both with the Sr^{2+} -buffer and with the Ba^{2+} -buffer, 10 μ M UTP induced a fast and transient increase in fura-2 fluorescence intensity (Fig. 2). However, the second sustained phase by UTP was not observed in BAFCs. The results suggest that the first phase was induced by Ca^{2+} release from ER and was not followed by the influx of Sr^{2+} or Ba^{2+} from the extracellular pool. The fluorescence intensity 10 minutes after the addi-

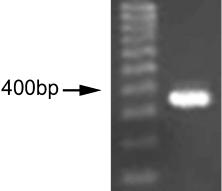


Fig. 1. RT-PCR for TRPC4 in BAFCs The specific primers of TRPC4 are : forward, 5'-CTCTGGGAAGAATGCTCCTG-3', and reverse, 5'-TATATCCGCATGGTCAGCAA-3'. The annealing temperature was 63°C, and 35 cycles were performed PCR. The expected length of the amplified fragment from mTRPC4 is 365 base pairs.
M: marker; TRPC4: mRNA for TRPC4

tion of UTP differed significantly between Ca^{2+} buffer and Sr^{2+} -buffer or Ba^{2+} -buffer (*p < 0.05).

 Effect of CPA on the fura-2 fluorescence intensity in BAFCs in the presence of extracellular Ca²⁺, Sr²⁺, and Ba²⁺

To investigate the above possibility, we used CPA, an inhibitor of sarco/endoplasmic reticulum Ca^{2+} -ATPase¹⁶, to activate SOCE in BAFCs. CPA inhibits the uptake of the released Ca^{2+} in the ER, depletes the luminal Ca^{2+} , and increases cytoplasmic Ca^{2+} . The depletion of Ca^{2+} in the ER activates SOCE channels.

Therefore, the rapid increase in fura-2 fluorescence intensity by CPA was observed by Ca^{2+} release from the ER, and the sustained phase was caused by Ca^{2+} influx from the extracellular space.

As shown in Fig. 3 (A), 100 μ M CPA caused a rapid increase in the fura-2 fluorescence intensity in Ca²⁺-buffer. The increase in fura-2 fluorescence intensity was sustained in Ca²⁺-buffer. However, the sustained phase decreased rapidly after Ca²⁺-buffer was replaced with Sr²⁺-buffer (A) or Ba²⁺-buffer (B).

In Sr²⁺-buffer, treatment with $100 \,\mu$ M CPA produced only the first rapid increase in fura-2 fluo-

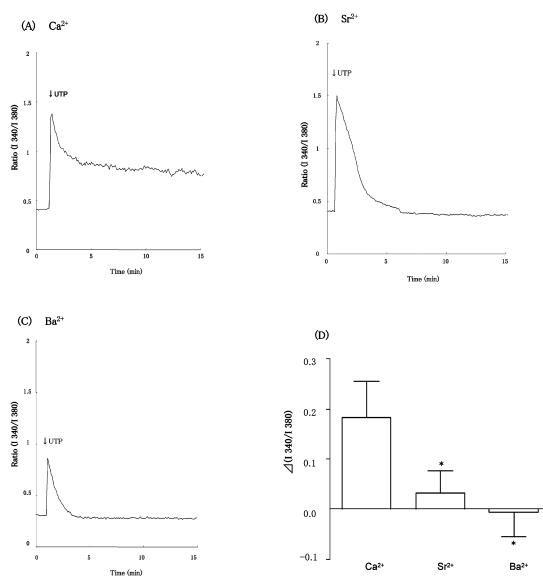


Fig. 2. Effect of UTP on the fura-2 fluorescence intensity in Ca²⁺-buffer, Sr²⁺-buffer, and Ba²⁺-buffer in BAFCs BAFCs on a cover slip were perfused with Ca²⁺-buffer, Sr²⁺-buffer, or Ba²⁺-buffer. UTP (10 μM) was added 50 seconds after the start of fluorescence determination in Ca²⁺-buffer (A), Sr²⁺-buffer (B), and Ba²⁺-buffer (C). Each trace is a typical trace from the 4 experiments.
(D) The ratio of the fluorescence intensity 10 minutes after the start of fluorescence determination.
*Statistically different from the value in Ca²⁺-buffer (*p*<0.01). Each value represents the mean±SE. *n*= 4.

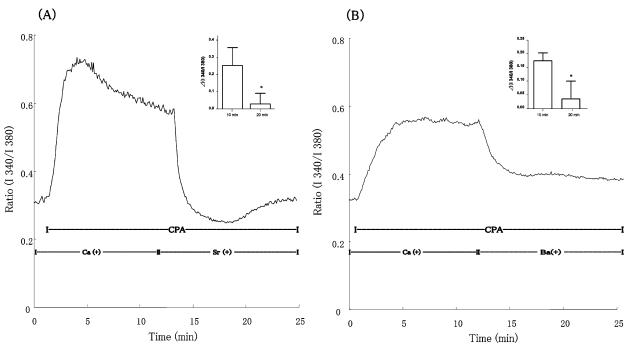
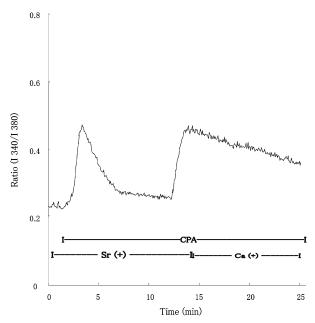
rescence intensity, and the second sustained phase was not observed. However, after Sr^{2+} -buffer was replaced with Ca^{2+} -buffer, the fura-2 fluorescence intensity increased rapidly and was sustained (Fig. 4).

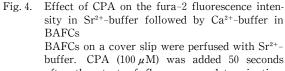
These results indicate Sr^{2+} could not enter BAFCs from the extracellular pool through CPA-induced SOCE.

DISCUSSION

SOCE plays an important role in the regulation of intracellular Ca²⁺ mobilization in nonexcitable cells¹. However, the precise mechanism of SOCE activation has not been established.

We have reported UTP-induced SOCE in BAFCs⁷. We have also reported that SOCE in


Fig. 3. Effect of CPA on the fura-2 fluorescence intensity in Ca²⁺-buffer, Sr²⁺-buffer, and Ba²⁺-buffer in BAFCs CPA (100 μM) was added 50 seconds after the start of fluorescence determination in Ca²⁺-buffer. At the plateau phase of fluorescence intensity by CPA, Ca²⁺-buffer was replaced with Sr²⁺-buffer (A) and Ba²⁺-buffer (B) containing CPA. Each trace is a typical trace from the 4 experiments. n=4.
(C) The ratio of the fura-2 fluorescence intensity 10 minutes and 25 minutes after the start of fluorescence determination. *Statistically different from the value 10 minutes after the start of fluorescence determination (p < 0.01). Each value represents the mean±SE. n=4.

BAFCs is closely related to glucocorticoid production^{17,18}. Therefore, the activation mechanisms of SOCE in BAFCs are necessary to clarify the effect of Ca²⁺ on glucocorticoid synthesis.

Recently, the mechanisms of SOCE activation have been narrowed down to 3 hypotheses: 1) the conformational coupling model and secretion-like model, 2) the vesicular fusion model, and 3) the diffusible messenger (the Ca²⁺ influx factor) model¹. In the conformational coupling and the secretion-like coupling model, IP₃ receptors in the ER are loosely attached to the SOCE channels in the PM, and IP₃ receptor-SOCE channel interaction may occur after Ca²⁺ store depletion to activate SOCE¹⁹. In the secretion-like coupling model, IP₃ receptor-SOCE channel complexes do not form, but peripheral ER containing IP₃ receptors travel to the PM after Ca²⁺ store depletion²⁰. The vesicular fusion model suggests that SOCE channels are not in the PM. There are SOCE channels containing vesicles in the cytosol, and the vesicles are inserted into the PM by an exocytic-like mechanism upon Ca²⁺ store depletion²¹. In these models, the intracellular dynamics of actin filaments plays an important role. The diffusible messenger model proposed by Takemura et al.²² suggests that a SOCE channel-activating factor is released from the ER by Ca²⁺ store depletion and that the factor diffuses to the PM to activate SOCE channels.

We have previously shown that a myosin-light chain kinase inhibitor (ML-9), calmodulin inhibitors (W-7 and E6 berbamine), and cytochalasin D inhibits UTP- and CPA-induced SOCE concomitant with the depolymerization of actin filaments in BAFCs⁸. On the basis of these results, we have suggested that the conformational coupling and secretion-like model was predominant in BAFCs⁸. This model advocates that SOCE channels in the PM and IP₃ receptors in the ER form SOCE units or that IP₃ receptors are close to the PM, and once the luminal Ca²⁺ in the ER is depleted, the SOCE channels and IP₃ receptors inter-

burrer. CPA (100 μ M) was added 50 seconds after the start of fluorescence determination. When the first phase of the fluorescence intensity by CPA decreased, the buffer was replaced with Ca²⁺-buffer containing CPA (100 μ M). The trace is a typical trace from the 5 experiments.

act with each other, after which SOCE is activated¹. However, because the applicable model differs with cell types and cell lines, our proposed model may not be universally applicable. Although these models have been proposed on the basis of evidence obtained with different types of cells, the SOCE channels in the PM have not been established.

A candidate for the SOCE channel is a member of the TRP superfamily^{4,5}. One of the 7 TRP families, the TRPC family is expressed in many types of cells and cell lines. The TRPCs are reported to be cation channels involved in SOCE channels^{4–6}. Philipp et al.⁸ have reported that TRPC4 is abundantly expressed in bovine adrenocortical cells and that TRPC1 is expressed at a traceable level. They did not detect any other TRPC subtypes. We have also shown that TRPC4 is expressed in BAFCs. Philipp et al. also suggested that the character of TRPC4 channels resemble calcium release-activated Ca²⁺ channels, a type of SOCE channel⁸. SOCE channels are highly Ca²⁺-selective¹¹, but TRPC4 is not⁹. SOCE channels are highly permeable to Ca^{2+} , but Sr^{2+} and Ba^{2+} are poorly permeable divalent cations¹¹. However, TRPC4 is permeable to not only Ca^{2+} but also Sr^{2+} and Ba^{2+9} . Both Sr^{2+} and Ba^{2+} reportedly bind to fura-2 to increase the fura-2 fluorescence intensity in the same manner as does Ca^{2+13} . Therefore, if extracellular Sr^{2+} and Ba^{2+} enter the cells, the fura-2 fluorescence intensity will increase.

Under our experimental conditions, UTP and CPA will induce Ca²⁺ influx after the depletion of luminal Ca²⁺ in the ER. However, when Ca²⁺ in the perfusing buffer was replaced by Sr²⁺ or Ba²⁺, the second increase in fura-2 fluorescence intensity was not observed. Therefore, treatment with UTP and CPA could not make BAFCs permeable to either cation. These results suggest that TRPC4 does not act as SOCE channels in BAFCs. Experimental evidence in HEK 293 cells^{23–25}, CHO cells²⁶, and rat glial cells¹⁰ also suggest that TRPC4 are cation channels not involved in SOCE. Our results and these reports suggest that TRPC4 do serve as SOCE channels in BAFCs.

More recently, promising candidates for an SOCE activating system have been proposed. One is Orail in the PM as a SOCE channel in HEK 293 cells²⁷, and the other is STIM1 in the ER membrane as a Ca²⁺ sensor in T lymphocytes^{28,29}. According to one hypothesis, STIM1 has an EF-hand on the lumen side and detects the luminal Ca²⁺ depletion. Then STIM1 polymerizes in the ER membrane and moves to the PM, after which Orail is activated³⁰. The possible involvement of Orail and STIM1 in the SOCE system should be studied in BAFCs.

Acknowledgements : The authors thank Prof. Osamu Ohara for his help in manuscript preparation.

References

- Parekh AB, Putney JW Jr. Store-operated calcium channels. Physiol Rev 2005; 85: 757-810.
- Putney JW Jr, Bird GS. The inositol phosphate-calcium signaling system in nonexcitable cells. Endocr Rev 1993; 14: 610-31.
- Parekh AB, Penner R. Store depletion and calcium influx. Physiol Rev 1997; 77: 901-30.

June, 2008

- Birnbaumer L, Zhu X, Jiang M, Boulay G, Peyton M, Vannier B, et al. On the molecular basis and regulation of cellular capacitative calcium entry: roles of Trp proteins. Proc Natl Acad Sci USA 1996; 93: 15195– 202.
- Montell C. Physiology, phylogeny and functions of the TRP superfamily of cation channels. Science's Stke 2001; 90: 1-17.
- Pedersen SF, Owsianik G, Nilius B. TRP channels: An overview. Cell Calcium 2005; 38: 233-52.
- Kawamura M, Terasaka O, Ebisawa T, Kondo I, Masaki E, Kagata M, et al. Integrity of actin-network is involved in uridine 5'-triphosphate evoked store-operated Ca²⁺ entry in bovine adrenocortical fasciculate cells. J Pharmacol Sci 2003; 91: 23-33.
- Philipp S, Trost C, Warnat J, Rautmann J, Himmerkus N, Schroth, G, et al. TRP4 (CCE1) protein is part of native calcium release-activated Ca²⁺-like channels in adrenal cells. J Biol Chem 2000; 275: 23965-72.
- Schaefer M, Plant TD, Obukhov AG, Hofmann T, Gudermann T, Schultz G. Receptor-mediated regulation of the nonselective cation channels TRPC4 and TRPC5. J Biol Chem 2000; 275: 17517-26.
- Grimaldi M, Maratos M, Verma A. Transient receptor potential channel activation causes a novel form of [Ca²⁺]₁ oscillations and is not involved in capacitative Ca²⁺ entry in glial cells. J Neurosci 2003; 23: 4737-45.
- Hoth M, Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 1992; 355: 353-6.
- Estacion M, Sinkins WG, Schilling WP. Stimulation of Drosophila TrpL by capacitative Ca²⁺ entry. Biochem J 1999; 341: 41-9.
- Kwan CY, Putney JW Jr. Uptake and intracellular sequestration of divalent cations in resting and methacholine-stimulated mouse lacrimal aciner cells. Dissociation by Sr²⁺ and Ba²⁺ of agonist-stimulated divalent cation entry from the refilling of the agonist-sensitive intracellular pool. J Biol Chem 1990; 265: 678-84.
- Matsui T. Biphasic rise caused by extracellular ATP in intracellular calcium concentration in bovine adrenocortical fasciculate cells. Biochem Biophys Res Commu. 1991; 178: 1266-72.
- Nishi H. Two different P2Y receptors linked to steroidogenesis in bovine adrenocortical cells. Jpn J Pharmacol 1999; 81: 194-9.
- Seidler NW, Jona I, Vegh M, Martonosi A. Cyclopiazonic acid is a specific inhibitor of the Ca²⁺-ATPase of sarcoplasmic reticulum. J Biol Chem 1989; 264: 17816– 23.
- 17. Ebisawa T, Kondo I, Masaki E, Hori S, Kawamura M. Capacitative calcium entry is involved in steroidogenesis

in bovine adrenocortical fasciculate cells. J Endocrinol 2000; 167: 473–8.

- Nishi H. Two different P2Y receptors linked to steroidogenesis in bovine adrenocortical cell. Jpn J Pharmacol 1999; 81: 194-9.
- Berridge MJ. Capacitative calcium entry. Biochem J 1995; 312: 1–11.
- Patterson RL, van Rossum DB, Gill DL. Store-operated Ca²⁺ entry: evidence for a secretion-like coupling model. Cell 1999; 98: 487-99.
- Bezzerides VJ, Ramsey IS, Kotecha S, Greka A, Clapham DE. Rapid vesicular translation and insertion of TRP channels. Nature Cell Biol 2004; 6: 709–20.
- 22. Takemura H, Hughes AR, Thastrup O, Putney JW Jr. Activation of calcium entry by the tumor promoter thapsigargin in parotid aciner cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. J Biol Chem 1989; 264: 12266-71.
- Zhu X, Jiang M, Birnbaumer L. Receptor-activated Ca²⁺ influx via human Trp3 stably expressed in human embryonic kidney (HEK) 293 cells: Evidence for a noncapacitative Ca²⁺ entry. J Biol Chem 1998; 273: 133– 42.
- Mckay RR, Szymeczek-Seay CL, Lievremont JP, Bird GS, Zitt C, Jungling E, et al. Cloning and expression of the human transient receptor potential 4 (TRP4) gene; localization and functional expression of human TRP4 and TRP3. Biochem J 2000; 351: 735-46.
- Wu X, Babnigg G, Zagranichnaya T, Villereal ML. The role of endogenous human Trp4 in regulating carbacholinduced calcium oscillation in HEK-293 cells. J Biol Chem 2002; 277: 13597-608.
- Hofmann T, Obukhov AG, Schaefer M, Harteneck C, Gudermann T, Schultz G. Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature 1999; 397: 259-63.
- Mercer JC, Dehavn WI, Smyth JT, Wedel B, Boyles RR, Bird GS, et al. Large store-operated calcium selective currents due to co-expression of Orail or Orai2 with the intracellular calcium sensor, Stim1. J Biol Chem 2006; 281: 24979-90.
- Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman Mh, et al. STIM1 is a Ca²⁺ sensor that activates CRAC channels and migrates from the Ca²⁺ store to the plasma membrane. Nature 2005; 437: 902-5.
- Liou J, Kim ML, Heo WD, Jones JT, Myers JW, Ferrell JE Jr, et al. STIM is a Ca²⁺ sensor essential for Ca²⁺store-depetion-triggered Ca²⁺ influx. Curr Biol 2005; 15: 1235-41.
- Lewis RS. The molecular choreography of a storeoperated calcium channel. Nature 2007; 446: 284-7.