Trial of Neoadjuvant Chemoradiation Therapy for Borderline Resectable Pancreatic Cancer

Fumitake Suzuki, Shuichi Fujioka, Masaru Kanehira, Ryusuke Ito, Tomoyoshi Okamoto, and Katsuhiko Yanaga

1Department of Surgery, The Jikei University Daisan Hospital
2Department of Surgery, The Jikei University School of Medicine

ABSTRACT

Purpose: The purpose of this report was to assess therapeutic outcome of neoadjuvant chemoradiation therapy (NACRT) for borderline resectable pancreatic cancer.

Patients and Methods: The subjects were seven patients who underwent NACRT for borderline resectable pancreatic cancer from 2009 to 2013 at our institute. The patients received neoadjuvant chemotherapy with S-1 or gemcitabine in addition to standard fractionated radiation therapy. We retrospectively investigated their therapeutic outcomes.

Results: Resectability after NACRT was 57% (4/7), and these four patients underwent elective pancreatic resection, consisting of pancreaticoduodenectomy (PD) in one patient, distal pancreatectomy (DP) in two and distal pancreatectomy with en bloc celiac axis resection (DPCAR) in one. R0 resection was obtained in all patients who underwent resection. The other three patients did not undergo pancreas resection due to the presence of contraindicating factors such as liver metastases or lung metastases during or just after NACRT. In these patients, the primary lesions decreased in size slightly, but vascular invasion was still observed. Among the four patients who underwent pancreas resection, two are alive without recurrence at 6 and 19 months after starting treatment and one is alive with lymph node metastases at 24 months. The remaining patient died due to carcinomatosa 17 months after the operation.

Conclusion: NACRT for borderline resectable pancreatic cancer seems to be promising in terms of R0 surgical resection, while novel non-surgical treatment for advanced pancreatic cancer is needed to prevent distant metastasis. (Jikeikai Med J 2015; 62: 15-9)

Key words: neoadjuvant chemoradiation therapy, borderline resectable, pancreatic cancer

INTRODUCTION

Surgical resection offers the only possible chance of cure for pancreatic cancer. However, most patients are diagnosed at an advanced stage, and only 10 to 20% of patients are resectable at the time of the initial diagnosis. Even for patients who have undergone curative resection (R0), survival analysis has revealed a poor outcome because of cancer recurrence.

Surgery followed by adjuvant chemotherapy is the standard care for resectable pancreatic cancer. Because of the low resection rate, the role of neoadjuvant chemoradiation therapy in increasing resectability, curability, and finally survival rate for borderline resectable disease is a matter of
intense debate\(^3\). The purpose of delivering neoadjuvant therapy to patients with borderline resectable pancreatic cancer was originally defined by Varadhachary et al. in 2006\(^5\). However, the benefit of neoadjuvant therapy for pancreatic cancer is still controversial, and its efficacy has not been clearly demonstrated. At our institute, NACRT was introduced in 2009. The purpose of this study is to evaluate the effectiveness of NACRT in patients with borderline resectable pancreatic cancer at our institute, with an emphasis on tumor response, resectability, and survival.

Patients and Methods

Patients

The subjects were seven patients who underwent NACRT for borderline resectable pancreatic cancer from 2009 to 2013 at the Department of Surgery, The Jikei University Daisan Hospital, Tokyo, Japan. All patients underwent thin slice (1 mm) section, contrast-enhanced dynamic CT for diagnosis and staging of their pancreatic cancer.

Borderline resectable pancreatic cancer was defined based on the criteria proposed by the M.D. Anderson Cancer Center Pancreas Cancer Group\(^5\). Patients with borderline resectable pancreatic cancer include those whose tumors exhibit encasement of a short segment of the hepatic artery that is amenable to resection and reconstruction without evidence of tumor extension to the celiac axis or tumor abutment of the superior mesenteric artery involving <180 degrees of the circumference of the artery. Furthermore, short-segment occlusion of the superior mesenteric vein, portal vein or their confluence with a suitable option available for vascular reconstruction was also included. Patients with metastatic or initially resectable tumors were excluded.

Chemoradiation therapy

The laboratory examinations to assess eligibility were completed within seven days prior to treatment initiation. Patients received neoadjuvant chemotherapy with S-1 or gemcitabine (GEM). S-1 was administered orally for 14 consecutive days, followed by a seven-day break. GEM was administered as a 30-min intravenous infusion on days 1, 8, and 15; this series was repeated every 28 days. The dosages in this study were 500 mg/m\(^2\) for GEM and 80 mg/day for S-1. Patients also commenced standard fractionation radiation therapy (total dose, 50 Gy in 2 Gy/fr, 5 d/wk). Figure 1 depicts the treatment protocol of NACRT for patients with borderline resectable pancreatic cancer.

Assessment of response and restaging were performed after the end of NACRT by means of CT examination. If
the patient was judged to be resectable, we performed the operation within two to four weeks after the end of NA-CRT. If the patient was judged to be borderline resectable, on the other hand, we continued to administer chemotherapy at the same frequency until the patient was deemed resectable. Salvage chemotherapy was administered to one patient who was judged to have progressive disease. Treatment effectiveness was evaluated according to the Response Evaluation Criteria in Solid Tumors (RECIST)⁶. The clinical course after NACRT was evaluated in terms of resectability, curability, recurrence rate and survival.

RESULTS

The seven patients who underwent NACRT were three men and four women with a median age of 67 years (range 56-77 years). The median of the tumors’ largest diameters was 41 mm (range 14-80 mm). Clinical staging was determined according to the General Rules for the Study of Pancreatic Cancer (The 6th Edition, Revised Version) by the Japan Pancreas society⁷. Pancreatic cancers were located in the head in two patients and in the body in the other five. NACRT consisted of S-1 in four patients and GEM in three. The reason for borderline resectability was PV invasion in six patients and common hepatic artery invasion in one. There were no cases requiring dose de-escalation, dose skipping or discontinuation of chemotherapy. All patients completed their courses of radiation therapy. As for adverse events, loss of appetite happened in one patient and slight myelosuppression happened in three patients, but none of these events necessitated supportive care. Table 1 shows the patient characteristics and reasons for borderline resectability.

The outcome of NACRT was classified as partial response in three patients, stable disease in one, and progressive disease in three. In all cases of partial response, invasion to the CHA and PV disappeared after NACRT. The case of stable disease retained invasion to the PV, but R0 resection and vascular reconstruction were nevertheless achieved safely. All cases of progressive disease were classified as such due to distant metastatic lesions (liver metastases in two patients and lung metastases in one). In addition, the primary lesions decreased in size slightly after NACRT, but vascular invasion was still observed.

Four of the seven patients (57%) underwent surgical resection, which consisted of PD in one patient, DP in two, and DPCAR in one. In all four patients who underwent surgical resection, R0 resection was achieved successfully. All surgical patients received adjuvant chemotherapy. Two of the four are alive without recurrence at 6 and 19 months after starting treatment, respectively, and a third patient is alive at 24 months with locoregional lymph node metastases in the abdomen. The fourth patient, who was treated with DPCAR, died due to carcinomatosa at 17 months after starting treatment. All patients who did not undergo surgical resection changed their chemotherapy from GEM to S-1, but all died within six months after starting treatment (Table 2).

DISCUSSION

In patients with resectable pancreatic cancer, the high rate of development of both local recurrence and distant metastases in the early postoperative period is the main reason for poor prognosis. Previously, extended lymphadenectomy was performed for pancreatic cancer to improve outcome, but most randomized controlled trials demonstrated that extended lymphadenectomy in radical PD did not improve long-term survival as compared with standard PD⁸-¹¹. These results indicate the limitations of surgery alone for pancreatic cancer. Therefore, multidisciplinary therapy that combines surgical resection with chemotherapy or radiation therapy seems necessary to improve prognosis for pancreatic cancer.

Conventional therapy for pancreatic cancer is surgery
followed by adjuvant chemotherapy. Unfortunately, patients often cannot receive enough adjuvant therapy because of locally advanced disease or post-operative complications. This difficulty may be overcome by performing neoadjuvant therapy, which allows more patients to receive potentially effective treatment. The effectiveness of neoadjuvant therapy for borderline resectable pancreatic cancer is still controversial. However, several recent reports have suggested that neoadjuvant therapy for borderline resectable pancreatic cancer might improve survival outcome. In 2005, Cunha et al. reported on neoadjuvant chemoradiation therapy in 61 patients with radiographically unresectable pancreatic cancer and concluded that patients whose cancer became resectable achieved prolonged survival, to a degree comparable with survival after resection for initially resectable pancreatic cancer. Likewise, in 2008, Katz et al. reported on neoadjuvant therapy in 160 patients classified as borderline resectable. They demonstrated that median survival was 40 months for the 66 patients who completed both surgical resection and neoadjuvant therapy, in contrast to 13 months for the 94 patients who did not undergo pancreatectomy.

The following advantages of NACRT are expected: first, neoadjuvant therapy is a potentially useful strategy for downstaging borderline resectable pancreatic cancer to allow surgical resection. Second, neoadjuvant therapy can avoid unnecessary surgical resection, it enables the identification of patients who already have occult metastatic disease during neoadjuvant therapy. Finally, neoadjuvant therapy is not affected by the post-operative complications that may delay surgical recovery. Neoadjuvant therapy does have disadvantages, the most serious of which is patient drop-out. In our three patients who could not receive surgical resection due to distant metastases, the treatment protocol we chose emphasized local treatment. In order to avoid treatment-related adverse events, the chemotherapeutic dosages had to be decreased. Radiation therapy is effective for local sites, but its ability to control distant metastasis is poor. In our past experience, chemoradiation therapy has a stronger local reduction effect than chemotherapy alone, but it is associated with a greater frequency of distant metastasis. Of the two types of neoadjuvant therapy for pancreatic cancer, it is controversial whether chemoradiation therapy or chemotherapy alone is more effective. Because it is not clear that neoadjuvant radiation therapy is effective, we plan to emphasize the con-

<table>
<thead>
<tr>
<th>Age</th>
<th>Sex</th>
<th>Location</th>
<th>Stage</th>
<th>BR factor</th>
<th>Chemo</th>
<th>Response</th>
<th>Operation</th>
<th>Recurrence</th>
<th>Status</th>
<th>(months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>M</td>
<td>Pb T4N1</td>
<td>Stage IVa</td>
<td>CHA</td>
<td>GEM</td>
<td>PR</td>
<td>DP-CAR</td>
<td>carcinomatosa</td>
<td>Dead</td>
<td>(17)</td>
</tr>
<tr>
<td>76</td>
<td>F</td>
<td>Pb T4N1</td>
<td>Stage IVa</td>
<td>PV</td>
<td>TS-1</td>
<td>PR</td>
<td>DP</td>
<td>Lymph nodes metastasis</td>
<td>Alive</td>
<td>(24+)</td>
</tr>
<tr>
<td>66</td>
<td>F</td>
<td>Pb T4N0</td>
<td>Stage IVa</td>
<td>PV</td>
<td>TS-1</td>
<td>PR</td>
<td>DP</td>
<td>None</td>
<td>Alive</td>
<td>(19+)</td>
</tr>
<tr>
<td>61</td>
<td>F</td>
<td>Ph T4N0</td>
<td>Stage IVa</td>
<td>PV</td>
<td>TS-1</td>
<td>SD</td>
<td>PD</td>
<td>None</td>
<td>Alive</td>
<td>(6+)</td>
</tr>
<tr>
<td>77</td>
<td>M</td>
<td>Pb T4N1</td>
<td>Stage IVa</td>
<td>PV</td>
<td>GEM</td>
<td>PD *Liver metastasis</td>
<td>None</td>
<td></td>
<td>Dead</td>
<td>(6)</td>
</tr>
<tr>
<td>63</td>
<td>M</td>
<td>Pb T4N1</td>
<td>Stage IVa</td>
<td>PV</td>
<td>GEM</td>
<td>PD *Lung metastasis</td>
<td>None</td>
<td></td>
<td>Dead</td>
<td>(4)</td>
</tr>
<tr>
<td>71</td>
<td>F</td>
<td>Ph T4N1</td>
<td>Stage IVa</td>
<td>PV</td>
<td>GEM</td>
<td>PD *Liver metastasis</td>
<td>None</td>
<td></td>
<td>Dead</td>
<td>(5)</td>
</tr>
</tbody>
</table>

(M: male; F: female; N: number; Ph: pancreas head; Pb: pancreas body; GEM: gemcitabine; BR: borderline resectable; PV: portal vein; CHA: common hepatic artery; PR: partial response; SD: stable disease; PD: progressive disease; PD: pancreatectoduodenectomy; DP: distal pancreatectomy; DPCAR: distal pancreatectomy with en bloc axis resection; *: the reason for PD; Status: prognosis and time from treatment start date)
trol of distant metastases through neoadjuvant chemotherapy alone.

Conclusion

NACRT was performed in 57% (4/7), and R0 resection was achieved in all of these cases. NACRT for borderline resectable pancreatic cancer may be a promising means of enabling curative surgical resection, while a novel non-surgical treatment for advanced pancreatic cancer is needed to prevent distant metastasis.

Authors have no conflict of interest.

References